To elucidate the mechanisms of microgravity‐induced muscle atrophy, we focused on fast‐type myosin heavy chain (MHC) degradation and expression of proteases in atrophied gastrocnemius muscles of neonatal rats exposed to 16‐d spaceflight (STS‐90). The spaceflight stimulated ubiquitination of proteins, including a MHC molecule, and accumulation of MHC degradation fragments in the muscles. Semiquantitative reverse transcriptase‐polymerase chain reaction revealed that the spaceflight significantly increased mRNA levels of cathepsin L, proteasome components (RC2 and RC9), polyubiquitin, and ubiquitin‐conjugating enzyme in the muscles, compared with those of ground control rats. The levels of μ‐calpain, m‐calpain, cathepsin B, and cathepsin H mRNAs were not changed by the spaceflight. We also found that tail‐suspension of rats for 10 d or longer caused the ubiquitination and degradation of MHC in gastrocnemius muscle, as was observed in the spaceflight rats. In the muscle of suspended rats, these changes were closely associated with activation of proteasome and up‐regulation of expression of mRNA for the proteasome components and polyubiquitin. Administration of a cysteine protease inhibitor, E‐64, to the suspended rats did not prevent the MHC degradation. Our results suggest that spaceflight induces the degradation of muscle contractile proteins, including MHC, possibly through a ubiquitin‐dependent proteolytic pathway.
The additional suture bridges decreased the retear rate for large and massive tears. The combination of the double-row and suture-bridge techniques, which had the lowest rate of postoperative retear, is an effective option for arthroscopic repair of the rotator cuff tendons because the postoperative functional outcome in patients with a retear is inferior to that without retear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.