Neuropathic pain (NP) is an intolerable pain syndrome that arises from continuous inflammation and excitability after nerve injury. Only a few NP therapeutics are currently available, and all of them do not provide adequate pain relief. Herein, we report the discovery of a selective and potent inhibitor of the bromodomain and extra-terminal (BET) proteins for reducing neuroinflammation and excitability to treat NP. Starting with the screening hit 1 from an in-house compound library, iterative optimization resulted in the potent BET inhibitor DDO-8926 with a unique binding mode and a novel chemical structure. DDO-8926 exhibits excellent BET selectivity and favorable drug-like properties. In mice with spared nerve injury, DDO-8926 significantly alleviated mechanical hypersensitivity by inhibiting pro-inflammatory cytokine expression and reducing excitability. Collectively, these results implicate that DDO-8926 is a promising agent for the treatment of NP.
Ulcerative colitis (UC) is an idiopathic inflammatory disease of unknown etiology possibly associated with intestinal inflammation and oxidative stress. Molecular hybridization by combining two drug fragments to achieve a common pharmacological goal represents a novel strategy. The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway provides an effective defense mechanism for UC therapy, and hydrogen sulfide (H2S) shows similar and relevant biological functions as well. In this work, a series of hybrid derivatives were synthesized by connecting an inhibitor of Keap1-Nrf2 protein–protein interaction with two well-established H2S-donor moieties, respectively, via an ester linker, to find a drug candidate more effective for the UC treatment. Subsequently, the cytoprotective effects of hybrids derivatives were investigated, and DDO-1901 was identified as a candidate showing the best efficacy and used for further investigation on therapeutic effect on dextran sulfate sodium (DSS)-induced colitis in vitro and in vivo. Experimental results indicated that DDO-1901 could effectively alleviate DSS-induced colitis by improving the defense against oxidative stress and reducing inflammation, more potent than parent drugs. Compared with either drug alone, such molecular hybridization may offer an attractive strategy for the treatment of multifactorial inflammatory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.