We present the design and evaluation of an integrated problem solving environment for cancer therapy analysis. The environment intertwines a statistical martingale model and a K Nearest Neighbor approach with visual encodings, including novel interactive nomograms, in order to compute and explain a patient's probability of survival as a function of similar patient results. A coordinated views paradigm enables exploration of the multivariate, heterogeneous and few-valued data from a large head and neck cancer repository. A visual scaffolding approach further enables users to build from familiar representations to unfamiliar ones. Evaluation with domain experts show how this visualization approach and set of streamlined workflows enable the systematic and precise analysis of a patient prognosis in the context of cohorts of similar patients. We describe the design lessons learned from this successful, multi-site remote collaboration.
We introduce a web-based visual comparison approach for the systematic exploration of dynamic activation networks across biological datasets. Understanding the dynamics of such networks in the context of demographic factors like age is a fundamental problem in computational systems biology and neuroscience. We design visual encodings for the dynamic and community characteristics of these temporal networks. Our multi-scale approach blends nested mosaic matrices that capture temporal characteristics of the data, spatial views of the network data, Kiviat diagrams and mirror glyphs that detail the temporal behavior and community assignment of specific nodes. A top design specifically targeted at pairwise visual comparison further supports the comparative analysis of multiple dataset activations. We demonstrate the effectiveness of this approach through a case study on mouse brain network data. Domain expert feedback indicates this approach can help identify trends and anomalies in the data.
Study of the behavior of individual members in communities of dynamic networks can help neuroscientists to understand how interactions between neurons in brain networks change over time. Visualization of those temporal features is challenging, especially for networks embedded within spatial structures, such as brain networks. In this article, the authors present the design of SwordPlots, an interactive multi-view visualization system to assist neuroscientists in their exploration of dynamic brain networks from multiple perspectives. Their visualization helps neuroscientists to understand how the functional behavior of the brain changes over time, how such behaviors are related to the spatial structure of the brain, and how communities of neurons with similar functionality evolve over time. To evaluate their application, they asked neuroscientists to use SwordPlots to examine four different mouse brain data sets. Based on feedback, their visualization design can provide neuroscientists with the ability to gain new insights into the properties of dynamic brain networks.
Network analysis of large-scale neuroimaging data is a particularly challenging computational problem. Here, we adapt a novel analytical tool, the community dynamic inference method (CommDy), for brain imaging data from young and aged mice. CommDy, which was inspired by social network theory, has been successfully used in other domains in biology; this report represents its first use in neuroscience. We used CommDy to investigate aging-related changes in network metrics in the auditory and motor cortices using flavoprotein autofluorescence imaging in brain slices and in vivo. We observed that auditory cortical networks in slices taken from aged brains were highly fragmented compared to networks observed in young animals. CommDy network metrics were then used to build a random-forests classifier based on NMDA-receptor blockade data, which successfully reproduced the aging findings, suggesting that the excitatory cortical connections may be altered during aging. A similar aging-related decline in network connectivity was also observed in spontaneous activity in the awake motor cortex, suggesting that the findings in the auditory cortex reflect general mechanisms during aging. These data suggest that CommDy provides a new dynamic network analytical tool to study the brain and that aging is associated with fragmentation of intracortical networks.
Study of the behavior of individual members in communities of dynamic networks can help neuroscientists to understand how interactions between neurons in brain networks change over time. Visualization of those temporal features is challenging, especially for networks embedded within spatial structures, such as brain networks. In this article, the authors present the design of SwordPlots, an interactive multi-view visualization system to assist neuroscientists in their exploration of dynamic brain networks from multiple perspectives. Their visualization helps neuroscientists to understand how the functional behavior of the brain changes over time, how such behaviors are related to the spatial structure of the brain, and how communities of neurons with similar functionality evolve over time. To evaluate their application, they asked neuroscientists to use SwordPlots to examine four different mouse brain data sets. Based on feedback, their visualization design can provide neuroscientists with the ability to gain new insights into the properties of dynamic brain networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.