BackgroundThe infection and virulence functions of diverse plant and animal pathogens that possess quorum sensing systems are regulated by N-acylhomoserine lactones (AHLs) acting as signal molecules. AHL-acylase is a quorum quenching enzyme and degrades AHLs by removing the fatty acid side chain from the homoserine lactone ring of AHLs. This blocks AHL accumulation and pathogenic phenotypes in quorum sensing bacteria.ResultsAn aac gene of undemonstrated function from Ralstonia solanacearum GMI1000 was cloned, expressed in Escherichia coli; it inactivated four AHLs that were tested. The sequence of the 795 amino acid polypeptide was considerably similar to the AHL-acylase from Ralstonia sp. XJ12B with 83% identity match and shared 39% identity with an aculeacin A acylase precursor from the gram-positive actinomycete Actinoplanes utahensis. Aculeacin A is a neutral lipopeptide antibiotic and an antifungal drug. An electrospray ionisation mass spectrometry (ESI-MS) analysis verified that Aac hydrolysed the amide bond of AHL, releasing homoserine lactone and the corresponding fatty acids. However, ESI-MS analysis demonstrated that the Aac could not catalyze the hydrolysis of the palmitoyl moiety of the aculeacin A. Moreover, the results of MIC test of aculeacin A suggest that Aac could not deacylate aculeacin A. The specificity of Aac for AHLs showed a greater preference for long acyl chains than for short acyl chains. Heterologous expression of the aac gene in Chromobacterium violaceum CV026 effectively inhibited violacein and chitinase activity, both of which were regulated by the quorum-sensing mechanism. These results indicated that Aac could control AHL-dependent pathogenicity.ConclusionThis is the first study to find an AHL-acylase in a phytopathogen. Our data provide direct evidence that the functioning of the aac gene (NP520668) of R. solanacearum GMI1000 is via AHL-acylase and not via aculeacin A acylase. Since Aac is a therapeutic potential quorum-quenching agent, its further biotechnological applications in agriculture, clinical and bio-industrial fields should be evaluated in the near future.
The effect of factor for inversion stimulation (Fis) protein on IS2 transposition was investigated. A full-length IS2 was found to transpose at a frequency 64 times lower in a normal Escherichia coli than in a fis- mutant. To investigate whether Fis affects IS2 transposition by DNA binding, gel retardation and DNase I footprinting experiments were performed. Analysis of Fis binding to the left terminus of IS2 revealed that Fis binds to nucleotide number 44-60 located between the -35 and -10 regions of the major IS2 promoter. To further determine whether Fis binding affects IS2 transcription, the major IS2 promoter was fused to a luciferase gene and assayed for its transcription efficiency in the presence or absence of Fis. The results showed that Fis reduced transcription from the major IS2 promoter by approximately sixfold. Analysis of Fis binding to the right terminal repeat of IS2 revealed that Fis binds to the inner end of the repeat, which is the same region as the place where the IS2 transposase binds. These results suggest that Fis inhibits IS2 transposition by blocking the binding sites of IS2 transposase and by repressing the transcription of IS2 genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.