Food safety is increasingly becoming an important public health issue, as foodborne diseases present a widespread and growing public health problem in both developed and developing countries. The rapid and precise monitoring and detection of foodborne pathogens are some of the most effective ways to control and prevent human foodborne infections. Traditional microbiological detection and identification methods for foodborne pathogens are well known to be time consuming and laborious as they are increasingly being perceived as insufficient to meet the demands of rapid food testing. Recently, various kinds of rapid detection, identification, and monitoring methods have been developed for foodborne pathogens, including nucleic-acid-based methods, immunological methods, and biosensor-based methods, etc. This article reviews the principles, characteristics, and applications of recent rapid detection methods for foodborne pathogens.
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
Whether hypercholesterolemia (HC) can induce proarrhythmic neural and electrophysiological remodeling is unclear. We fed rabbits with either high cholesterol (HC, n=10) or standard (S, n=10) chows for 12 weeks (protocol 1), and with HC (n=12) or S (n=10) chows for 8 weeks (protocol 2). In protocol 3, 10 rabbits were fed with various protocols to observe the effects of different serum cholesterol levels. Results showed that the serum cholesterol levels were 2097+/-288 mg/dL in HC group and 59+/-9 mg/dL in S group for protocol 1 and were 1889+/-577 mg/dL in HC group and 50+/-21 mg/dL in S group for protocol 2. Density of growth-associated protein 43- (GAP43) and tyrosine hydroxylase- (TH) positive nerves in the heart was significantly higher in HC than S in protocol 1. Compared with S, HC rabbits had longer QTc intervals, more QTc dispersion, longer action potential duration, increased heterogeneity of repolarization and higher peak calcium current (ICa) density (14.0+/-3.1 versus 9.1+/-3.4 pA/pF; P<0.01) in protocol 1 and 2. Ventricular fibrillation was either induced or occurred spontaneously in 9/12 of hearts of HC group and 2/10 of hearts in S group in protocol 2. Protocol 3 showed a strong correlation between serum cholesterol level and nerve density for GAP43 (R2=0.94; P<0.001) and TH (R2=0.91; P<0.001). We conclude that HC resulted in nerve sprouting, sympathetic hyperinnervation, and increased ICa. The neural and electrophysiological remodeling was associated with prolonged action potential duration, longer QTc intervals, increased repolarization dispersion, and increased ventricular vulnerability to fibrillation.
Gold nanorods emit strong photoluminescence under two photon excitation; the efficient two photon lumininescence (TPL) arises from the local field enhancement assisted by surface plasmons. The surface plasmon effects on the TPL efficiency and spectrum are investigated by measuring the TPL of gold nanorods with various aspect ratios. A large TPL efficiency is found when incident light wavelength coincides with the longitudinal surface plasmon mode of the gold nanorods. However, the emission spectra of nanorods with various aspect ratios look similar and exhibit modest surface plasmon features, which implies a major non-radiative decay of excited surface plasmons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.