Bone remodeling is essential for adult bone homeostasis. The failure of this process often leads to the development of osteoporosis, a present major global health concern. The most important factor that affects normal bone remodeling is the tightly controlled and orchestrated regulation of osteoblasts and osteoclasts. The present review summarized the recent discoveries related to osteoblast regulation from several signals, including transforming growth factor-β, bone morphogenetic proteins, Wnt signal, Notch, Eph-Ephrin interaction, parathyroid hormone/parathyroid hormone-related peptide, and the leptin-serotonin-sympathetic nervous systemic pathway. The awareness of these mechanisms will facilitate further research that explores bone remodeling and osteoporosis. Future investigations on the endogenous regulation of osteoblastogenesis will increase the current knowledge required for the development of potential drug targets in the treatment of osteoporosis.
Our results directly showed that ICMT induced the calcification and downregulation of ankh gene expression of end plate chondrocytes, which may be caused by the endogenous TGF-β1.
Although the mechanisms of Tumor necrosis factor alpha (TNF-α) on facilitating osteoclast differentiation and bone resorption is well known, the mechanisms behind the suppression of the osteoblast differentiation from mesenchymal stem cells (MSCs) are still poorly understood. In this study, we observed a negative correlation between TNF-α levels and the expression of special AT-rich sequence-binding protein 2 (SATB2), a critical osteoblastogenesis transcription factor, in ovariectomy (OVX)-induced bone loss and IL-1-induced arthritis animal model. We found that TNF-α treatment inhibited mesenchymal cell line C2C12 osteoblast differentiation and sharply decreased BMP2-induced SATB2 expression. Upon TNF-α treatment, the activity of smad1/5/8 was inhibited, by contrast, extracellular signal-regulated kinase-1/2 (ERK1/2) and P38 was increased in C2C12 cells, the inhibitor of ERK1/2 (U0126) was found to abrogate the TNF-α inhibition of SATB2 expression. Furthermore, the NF-κB signaling pathway in C2C12 cells was significantly activated by the treatment of TNF-α, and TNF-α induced NF-κB directly binds to SATB2 promoter to suppress its expression. These results suggest that TNF-α suppresses SATB2 expression through activating NF-κB and MAPK signaling and depressing smad1/5/8 signaling, which contributes to the inhibition of osteoblast differentiation and might be potential therapeutic targets for inflammation-induced bone loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.