The coordinate induction of protease activities and cell migration is a principal feature of endothelial cells (ECs) invading the interstitial space in the initial step of angiogenesis. However, the molecular mechanisms of these events are not fully characterized. Ets-1 is a member of the ets gene family of transcription factors, which binds to the Ets binding motif in the cis-acting elements and regulates the expression of certain genes. Four typical angiogenic growth factors, aFGF, bFGF, VEGF, and EGF, induced the expression of ets-1 mRNA in either human umbilical vein endothelial cells (HUVECs), ECV-304 cells (immortalized HUVECs), or human omental microvascular endothelial cells (HOMECs). The expression of ets-1 reached its maximum at 2 hr after factor addition and then decreased to the basal level by 12 hr. For characterization of the role of Ets-1 in angiogenesis, ets-1 antisense and sense oligodeoxynucleotides (ODNs) were constructed. The ets-1 antisense ODN but not sense ODN efficiently blocked the synthesis of Ets-1 protein by human ECs in response to angiogenic growth factors. Moreover, the ets-1 antisense ODN but not sense ODN almost completely abolished the binding of endothelial cell extract to DNA containing the Ets binding motif. The expression of urokinase-type plasminogen activator and matrix metalloproteinase-1 and the migration of ECs in response to growth factors were significantly inhibited by ets-1 antisense ODN but not by sense ODN. Tube formation by HOMECs in type 1 collagen gel stimulated with EGF was abrogated by ets-1 antisense ODN. Finally, the expression of Ets-1 protein in ECs during angiogenesis in vivo was confirmed by an immunohistochemical analysis using a murine angiogenesis model. These results indicate that the induction of ets-1 mRNA is a mutual phenomenon in ECs stimulated with angiogenic growth factors. Ets-1 appears to play an important role in angiogenesis, regulating the expression of proteases and the migration of ECs.
Ets-1, a transcription factor, is induced in endothelial cells (ECs) during angiogenesis. Here, we investigated the expression of Ets-1 during reendothelialization. When a confluent monolayer of human umbilical vein endothelial cell line, ECV304, was denuded, ECV304 at the wound edge expressed Ets-1. An immunohistochemical analysis revealed that Ets-1 accumulated in migrating cells at the wound edge and returned to basal level when reendothelialization was accomplished. This induction of Ets-1 could be reproduced in in vivo denudation of rat aortic endothelium by a balloon catheter. The induction of Ets-1 in ECs after denudation was regulated transcriptionally, and humeral factors released from injured ECs might not be responsible. Mitogen-activated protein kinase (MAPK) activities were investigated to explore the mechanism of this induction. Although extracellular signal-regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1 (JNK1), and p38 were activated after denudation, the activation of ERK1 and p38 was more rapid and prominent. PD98059, a specific MAPK/ERK kinase (MEK) 1 inhibitor, did not affect the induction of ets-1 mRNA, whereas SB203580, a specific p38 inhibitor, almost completely abrogated its induction. These results indicate that Ets-1 is induced in ECs after denudation through activation of p38. This induction of Ets-1 may be relevant for reendothelialization by regulating the expression of certain genes.
The coordinate induction of protease activities and cell migration is a principal feature of endothelial cells (ECs) invading the interstitial space in the initial step of angiogenesis. However, the molecular mechanisms of these events are not fully characterized. Ets-1 is a member of the ets gene family of transcription factors, which binds to the Ets binding motif in the cis-acting elements and regulates the expression of certain genes. Four typical angiogenic growth factors, aFGF, bFGF, VEGF, and EGF, induced the expression of ets-1 mRNA in either human umbilical vein endothelial cells (HUVECs), ECV-304 cells (immortalized HUVECs), or human omental microvascular endothelial cells (HOMECs). The expression of ets-1 reached its maximum at 2 hr after factor addition and then decreased to the basal level by 12 hr. For characterization of the role of Ets-1 in angiogenesis, ets-1 antisense and sense oligodeoxynucleotides (ODNs) were constructed. The ets-1 antisense ODN but not sense ODN efficiently blocked the synthesis of Ets-1 protein by human ECs in response to angiogenic growth factors. Moreover, the ets-1 antisense ODN but not sense ODN almost completely abolished the binding of endothelial cell extract to DNA containing the Ets binding motif. The expression of urokinase-type plasminogen activator and matrix metalloproteinase-1 and the migration of ECs in response to growth factors were significantly inhibited by ets-1 antisense ODN but not by sense ODN. Tube formation by HOMECs in type 1 collagen gel stimulated with EGF was abrogated by ets-1 antisense ODN. Finally, the expression of Ets-1 protein in ECs during angiogenesis in vivo was confirmed by an immunohistochemical analysis using a murine angiogenesis model. These results indicate that the induction of ets-1 mRNA is a mutual phenomenon in ECs stimulated with angiogenic growth factors. Ets-1 appears to play an important role in angiogenesis, regulating the expression of proteases and the migration of ECs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.