The ratio of M1/M2 macrophages in epicardial adipose tissue of CAD patients is changed compared with that in non-CAD patients. Human coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue.
SummaryIt has been hypothesized that epicardial fat, a local visceral fat depot with close proximity to coronary arteries, may serve as a source of inflammatory cytokines and cells in coronary atherosclerotic lesions. Here, we characterized infiltration of inflammatory cells and expression of adipocytokines in epicardial adipose tissue in patients with and without coronary artery disease (CAD). Pare samples were obtained from epicardial and subcutaneous adipose tissue during elective cardiac surgery (CAD, n = 8; non-CAD, n = 9). Inflammatory cell infiltration was investigated by immunohistochemical staining using antibodies against CD3, CD4, CD8 and CD68. Expression of adipocytokines was evaluated by real-time quantitative reverse transcription-polymerase chain reaction. Infiltration of macrophages and CD8-positive T cells in the epicardial adipose tissue in the CAD group was greater than that in the non-CAD group. In contrast, there was no significant difference between the two groups in the number of inflammatory cells in subcutaneous adipose tissue. No statistical difference could be found between the CAD group and the non-CAD group in the expression levels of adiponectin and inflammatory cytokines in epicardial adipose tissue. Our findings suggest that inflammatory cell infiltration is enhanced in epicardial adipose tissue, but not in subcutaneous fat, in patients with coronary artery disease. Chronic inflammation in epicardial fat may influence the pathogenesis of coronary atherosclerosis. (Int Heart J 2011; 52: 139-142)
Changes in synaptic efficacy are considered necessary for learning and memory. Recently, it has been suggested that estrogen controls synaptic function in the central nervous system. However, it is unclear how estrogen regulates synaptic function in central nervous system neurons. We found that estrogen potentiated presynaptic function in cultured hippocampal neurons. Chronic treatment with estradiol (1 or 10 nm) for 24 h significantly increased a high potassium-induced glutamate release. The estrogen-potentiated glutamate release required the activation of both phosphatidylinositol 3-kinase and MAPK. The high potassium-evoked release with or without estradiol pretreatment was blocked by tetanus neurotoxin, which is an inhibitor of exocytosis. In addition, the reduction in intensity of FM1-43 fluorescence, which labeled presynaptic vesicles, was enhanced by estradiol, suggesting that estradiol potentiated the exocytotic mechanism. Furthermore, protein levels of synaptophysin, syntaxin, and synaptotagmin (synaptic proteins, respectively) were up-regulated by estradiol. We confirmed that the up-regulation of synaptophysin was blocked by the MAPK pathway inhibitor, U0126. These results suggested that estrogen enhanced presynaptic function through the up-regulated exocytotic system. In this study, we propose that estrogen reinforced excitatory synaptic transmission via potentiated-glutamate release from presynaptic sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.