The aim of this study was to investigate the effect of chronic hypoxia on the development and progression of atherosclerosis in apolipoprotein E-knockout (apoE-KO) mice. Male and female apoE-KO mice (6 weeks old) and age-and sex-matched wild-type mice were kept under hypoxic conditions (10.0 ± 0.5% O2) in a gas chamber or in room air for 3 weeks. Aortic atherosclerotic plaque was not observed in wild-type mice under normoxic or hypoxic conditions. In the apoE-KO mice, however, hypoxia induced proliferation of smooth muscle cells and plaque formation in the aorta, which were not observed under normoxic conditions. Although sexual dimorphism of the response to hypoxia was not observed, these hypoxia-induced athero-
Elevated superoxide formation in cardiac extracts of apolipoprotein E-knockout (apoE-KO) mice has beenreported. In addition, we previously reported that hypoxia increased oxidative stress in the aortas of apoE-KO mice, although we did not examine the effect of hypoxia on the heart. The aim of this study was to inves-
Intermittent hypoxia due to sleep apnea syndrome is associated with cardiovascular diseases. However, the precise mechanisms by which intermittent hypoxic stress accelerates cardiovascular diseases are largely unclear. The aim of this study was to investigate the role of gp91(phox)-containing NADPH oxidase in the development of left ventricular (LV) remodeling induced by intermittent hypoxic stress in mice. Male gp91(phox)-deficient (gp91(-/-)) mice (n = 26) and wild-type (n = 39) mice at 7-12 wk of age were exposed to intermittent hypoxia (30 s of 4.5-5.5% O(2) followed by 30 s of 21% O(2) for 8 h/day during daytime) or normoxia for 10 days. Mean blood pressure and LV systolic and diastolic function were not changed by intermittent hypoxia in wild-type or gp91(-/-) mice, although right ventricular systolic pressure tended to be increased. In wild-type mice, intermittent hypoxic stress significantly increased the diameter of cardiomyocytes and interstitial fibrosis in LV myocardium. Furthermore, intermittent hypoxic stress increased superoxide production, 4-hydroxy-2-nonenal protein, TNF-alpha and transforming growth factor-beta mRNA, and NF-kappaB binding activity in wild-type, but not gp91(-/-), mice. These results suggest that gp91(phox)-containing NADPH oxidase plays a crucial role in the pathophysiology of intermittent hypoxia-induced LV remodeling through an increase of oxidative stress.
Sterol 12 alpha-hydroxylase (CYP8B) is a key enzyme for regulating the cholic acid/chenodeoxycholic acid ratio in bile acid biosynthesis. The hepatic CYP8B level was elevated in streptozotocin-induced diabetic rats, and the elevated CYP8B was suppressed by insulin administration [Ishida, H. et al. (1999) J. Biochem. 126, 19-25]. The streptozotocin-induced elevation of hepatic CYP8B mRNA concomitantly responded to the decrement of the serum insulin level. The CYP8B mRNA level in the cultivated rat hepatoma H4TG cells was strongly suppressed by insulin, although it was affected by dibutyryl cAMP or thyroxine to lesser extents. These observations demonstrate that CYP8B expression is dominantly regulated by the direct action of insulin on hepatocytes. A marked circadian rhythm (maximum at 13:00-16:00 and minimum at 1:00) was observed both on the mRNA level and the activity of CYP8B. This rhythm was shifted from that of cholesterol 7 alpha-hydroxylase, a rate-limiting enzyme of bile acid biosynthesis, showing a maximum at 22:00 and a minimum at 10:00, and this shift might oscillate the cholic acid/chenodeoxycholic acid ratio, which is increased in the late afternoon and decreased at midnight. The rhythm of CYP8B was the inverse of the circadian variation of serum insulin level and was similar to the circadian rhythm of glucose 6-phosphatase. These facts and the potent suppressive effect of insulin on CYP8B indicate that the oscillation of the serum insulin may be a factor in producing the circadian rhythm of CYP8B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.