Through analysis of the detailed genome-wide gene expression profiles of 81 breast tumors, we identified a novel gene, G-patch domain containing 2 (GPATCH2), that was overexpressed in the great majority of breast cancer cases. Treatment of breast cancer cells MCF-7 and T47D with siRNA against GPATCH2 effectively suppressed its expression, and resulted in the growth suppression of cancer cells, suggesting its essential role in breast cancer cell growth. We found an interaction of GPATCH2 protein with hPrp43, an RNA-dependent ATPase. Their interaction could significantly enhance the ATPase activity of hPrp43 and induce a growth-promoting effect on mammalian cells. Because northern blot analyses of normal human organs implied GPATCH2 to be a novel cancer/testis antigen, targeting GPATCH2 or inhibition of the interaction between GPATCH2 and hPrp43 could be a promising novel therapeutic strategy of breast cancer. (Cancer Sci
We previously reported Frizzled homolog 10 (FZD10), a member of the Frizzled family, to be a promising therapeutic target for synovial sarcomas. In this report, we established a murine monoclonal antibody (MAb), namely, MAb 92-13 that had specific binding activity against native
We previously reported that Frizzled homologue 10 (FZD10), a member of the Wnt signal receptor family, was highly and specifically upregulated in synovial sarcoma and played critical roles in its cell survival and growth. We here report a possible molecular mechanism of the FZD10 signaling in synovial sarcoma cells. We found a significant enhancement of phosphorylation of the Dishevelled (Dvl)2/Dvl3 complex as well as activation of the Rac1-JNK cascade in synovial sarcoma cells in which FZD10 was overexpressed. Activation of the FZD10-Dvls-Rac1 pathway induced lamellipodia formation and enhanced anchorage-independent cell growth cells. FZD10 overexpression also caused the destruction of the actin cytoskeleton structure, probably through the downregulation of the RhoA activity. Our results have strongly implied that FZD10 transactivation causes the activation of the non-canonical Dvl-Rac1-JNK pathway and plays critical roles in the development/progression of synovial sarcomas.
To investigate the molecular mechanism of mammary carcinogenesis and identify novel molecular targets for breast cancer therapy, we analyzed genome-wide gene expression profiles of 81 clinical breast cancer samples. Here, we report the critical role of LGN/GPSM2 (Leu-Gly-Asn repeat-enriched protein/G-protein signaling modulator 2) in the growth of breast cancer cells. Semiquantitative RT-PCR and Northern blot analyses confirmed upregulation of LGN/GPSM2 in a large proportion of breast cancers. Immunocytochemical staining identified LGN/GPSM2 at the spindle in cells at metaphase, and at midzone and midbody in cytokinetic cells. Western blot analysis indicated the highest expression and the phosphorylated form of LGN/GPSM2 protein in G2/M phase. Treatment with small-interfering RNAs (siRNAs) targeting LGN/GPSM2 caused incompletion of cell division and resulted in significant growth suppression of breast cancer cells. We found that the 450th threonine (Thr450) of LGN/GPSM2 was phosphorylated by the serine/threonine kinase PBK/TOPK during mitosis. Overexpression of LGN/GPSM2-T450A in which Thr450 was substituted with alanine induced growth suppression and aberrant chromosomal segregation. These findings imply an important role of LGN/GPSM2 in cell division of breast cancer cells and suggest that the PBK/TOPK-LGN/GPSM2 pathway might be a promising molecular target for treatment of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.