The probable structure of the inclusion complex of beta-cyclodextrin (beta-CD) and (-)-epigallocatechin gallate (EGCg) in D2O was investigated using several NMR techniques. EGCg formed a 1:1 complex with beta-CD, in which the A ring and a portion of the C ring of EGCg were included at the head of the phenolic hydroxyl group attached to C7 of EGCg in the beta-CD cavity from the wide secondary hydroxyl group side. In the 1:1 complex with beta-CD, EGCg maintained the conformation in which the B and B' rings of EGCg took pseudoequatorial and pseudoaxial positions with respect to the C ring, respectively. The structure of the inclusion complexes of beta-CD and EGCg obtained from NMR experiments supported those determined from AM1 semiempirical SCF MO calculations well.
Voltage-dependent Ca2+channels regulate the entry of extracellular Ca2+into cytoplasm, and play a key role in the regulation of important intracellular events, such as control of proliferation. To investigate the regulation mechanisms of intracellular Ca2+ in the gingival fibroblast, a non-excitable cell, we tested whether
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.