We cloned the myo2 gene of Schizosaccharomyces pombe, which encodes a type II myosin heavy chain, by virtue of its ability to promote diploidization in fission yeast cells. The myo2 gene encodes 1,526 amino acids in a single open reading frame. Myo2p shows homology to the head domains and the coiledcoil tail of the conventional type II myosin heavy chain and carries putative binding sites for ATP and actin. It also carries the IQ motif, which is a presumed binding site for the myosin light chain. However, Myo2p apparently carries only one IQ motif, while its counterparts in other species have two. There are nine proline residues, which should break α-helix, in the COOH-terminal coiled-coil region of Myo2p. Thus, Myo2p is rather unusual as a type II myosin heavy chain. Disruption of myo2 inhibited cell proliferation. myo2Δ cells showed normal punctate distribution of interphase actin, but they produced irregular actin rings and septa and were impaired in cell separation. Overproduction of Myo2p was also lethal, apparently blocking actin relocation. Nuclear division proceeded without actin ring formation and cytokinesis in cells overexpressing Myo2p, giving rise to multinucleated cells with dumbbell morphology. Analysis using tagged Myo2p revealed that Myo2p colocalizes with actin in the contractile ring, suggesting that Myo2p is a component of the ring and responsible for its contraction. Furthermore, genetic evidence suggested that the acto–myosin system may interact with the Ras pathway, which regulates mating and the maintenance of cell morphology in S. pombe.
We cloned the myo3 + gene of Schizosaccharomyces pombe which encodes a type-II myosin heavy chain. myo3 null cells showed a defect in cytokinesis under certain conditions. Overproduction of Myo3 also showed a defect in cytokinesis. Double mutant analysis indicated that Myo3 genetically interacts with Cdc8 tropomyosin and actin. Myo3 may be implicated in cytokinesis and stabilization of F-actin cables. Moreover, the function of Myo2 can be replaced by overexpressed Myo3. We observed a modest synthetic interaction between Myo2 and Myo3. Thus, Myo2 and Myo3 seem to cooperate in the formation of the F-actin ring in S. pombe.z 1997 Federation of European Biochemical Societies.
Background: Formins are multidomain proteins defined by a conserved FH2 (formin homology 2) domain with actin nucleation activity preceded by a proline-rich FH1 (formin homology 1) domain. Formins act as profilin-modulated processive actin nucleators conserved throughout a wide range of eukaryotes.
Formins are highly conserved regulators of cytoskeletal organization and share three regions of homology: the FH1, FH2 and FH3 domains. Of the nine known formin genes or pseudogenes carried by Dictyostelium, forC is novel in that it lacks an FH1 domain. Mutant Dictyostelium lacking forC (ΔforC) grew normally during the vegetative phase and, when starved, migrated normally and formed tight aggregates. Subsequently, however, ΔforC cells made aberrant fruiting bodies with short stalks and sori that remained unlifted. ΔforCaggregates were also unable to migrate as slugs, suggesting forC is involved in mediating cell movement during multicellular stages of Dictyostelium development. Consistent with this idea, expression of forC was increased significantly in aggregates of wild-type cells. GFP-ForC expressed in ΔforC cells was localized at the crowns,which are macropinocytotic structures rich in F-actin, suggesting that, like other formin isoforms, ForC functions in close relation with the actin cytoskeleton. Truncation analysis of GFP-ForC revealed that the FH3 domain is required for ForC localization; moreover, localization of a truncated GFP-ForC mutant at the site of contacts between cells on substrates and along the cortex of cells within a multicellular culminant suggests that ForC is involved in the local actin cytoskeletal reorganization mediating cell-cell adhesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.