Sex reversal has been suggested to have profound implications for the evolution of sex chromosomes and population dynamics in ectotherms. Occasional sex reversal of genetic males has been hypothesized to prevent the evolutionary decay of nonrecombining Y chromosomes caused by the accumulation of deleterious mutations. At the same time, sex reversals can have a negative effect on population growth rate. Here, we studied phenotypic and genotypic sex in the common frog (Rana temporaria) in a subarctic environment, where strongly female-biased sex ratios have raised the possibility of frequent sex reversals. We developed two novel sex-linked microsatellite markers for the species and used them with a third, existing marker and a Bayesian modelling approach to study the occurrence of sex reversal and to determine primary sex ratios in egg clutches. Our results show that a significant proportion (0.09, 95% credible interval: 0.04-0.18) of adults that were genetically female expressed the male phenotype, but there was no evidence of sex reversal of genetic males that is required for counteracting the degeneration of Y chromosome. The primary sex ratios were mostly equal, but three clutches consisted only of genetic females and three others had a significant female bias. Reproduction of the sex-reversed genetic females appears to create all-female clutches potentially skewing the population level adult sex-ratio consistent with field observations. However, based on a simulation model, such a bias is expected to be small and transient and thus does not fully explain the observed female-bias in the field.
Pituitary adenomas are one of the most common benign neoplasms of the central nervous system. Although emerging evidence suggests roles for both genetic and epigenetic factors in tumorigenesis, the degree to which these factors contribute to disease remains poorly understood. A multiplatform analysis was performed to identify the genomic and epigenomic underpinnings of disease among the three major subtypes of surgically resected pituitary adenomas in 48 patients: growth hormone (GH)-secreting ( = 17), adrenocorticotropic hormone (ACTH)-secreting ( = 13, including 3 silent-ACTH adenomas), and endocrine-inactive ( = 18). Whole-exome sequencing was used to profile the somatic mutational landscape, whole-transcriptome sequencing was used to identify disease-specific patterns of gene expression, and array-based DNA methylation profiling was used to examine genome-wide patterns of DNA methylation. Recurrent single-nucleotide and small indel somatic mutations were infrequent among the three adenoma subtypes. However, somatic copy-number alterations (SCNA) were identified in all three pituitary adenoma subtypes. Methylation analysis revealed adenoma subtype-specific DNA methylation profiles, with GH-secreting adenomas being dominated by hypomethylated sites. Likewise, gene-expression patterns revealed adenoma subtype-specific profiles. Integrating DNA methylation and gene-expression data revealed that hypomethylation of promoter regions are related with increased expression of and genes in GH-secreting adenomas and gene in ACTH-secreting adenomas. Finally, multispectral IHC staining of immune-related proteins showed abundant expression of PD-L1 among all three adenoma subtypes. Taken together, these data stress the contribution of epigenomic alterations to disease-specific etiology among adenoma subtypes and highlight potential targets for future immunotherapy-based treatments. This article reveals novel insights into the epigenomics underlying pituitary adenomas and highlights how differences in epigenomic states are related to important transcriptome alterations that define adenoma subtypes. .
The mutational process varies at many levels, from within genomes to among taxa. Many mechanisms have been linked to variation in mutation, but understanding of the evolution of the mutational process is rudimentary. Physiological condition is often implicated as a source of variation in microbial mutation rate and may contribute to mutation rate variation in multicellular organisms. Deleterious mutations are an ubiquitous source of variation in condition. We test the hypothesis that the mutational process depends on the underlying mutation load in two groups of Caenorhabditis elegans mutation accumulation (MA) lines that differ in their starting mutation loads. "First-order MA" (O1MA) lines maintained under minimal selection for $250 generations were divided into high-fitness and low-fitness groups and sets of "second-order MA" (O2MA) lines derived from each O1MA line were maintained for $150 additional generations. Genomes of 48 O2MA lines and their progenitors were sequenced. There is significant variation among O2MA lines in base-substitution rate (m bs), but no effect of initial fitness; the indel rate is greater in high-fitness O2MA lines. Overall, m bs is positively correlated with recombination and proximity to short tandem repeats and negatively correlated with 10 bp and 1 kb GC content. However, probability of mutation is sufficiently predicted by the three-nucleotide motif alone. Approximately 90% of the variance in standing nucleotide variation is explained by mutability. Total mutation rate increased in the O2MA lines, as predicted by the "drift barrier" model of mutation rate evolution. These data, combined with experimental estimates of fitness, suggest that epistasis is synergistic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.