Evaluation of the corrosion resistance of a new stainless steel, SUS443J1, in atmospheric environments is a significant issue. In this study, the growth behavior of pits on the surface of the ferritic stainless steel, SUS443J1, and an austenitic stainless steel, SUS304, were compared by field exposure tests and electrochemical measurements.It is known that the pit growth rate can be approximated as X = at n , where X is pit depth, t is time, a and n are constants. As a result of field exposure tests, pit growth rate values of approximately n = 0.2 were obtained for both 2B and HL surfaces of SUS443J1 and SUS304. From this, it could be predicted that the pit growth behaviors of SUS443J1 and SUS304 were mutually equivalent.The pitting potential values V' c10 of SUS443J1 and SUS304 were almost equivalent, and the repassivation potential showed the same tendency. The pitting potential decreased with increasing the maximum valley depth R v of the surface. The repassivation potential was affected by the turning current density, where the sweep of potential was reversed. The turning current density represents the degree of pit growth. It was suggested that a deep pit would expand at a larger growth rate than that of a shallow pit because the deep pit grows easily and repassivation is difficult in deep pits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.