Background: Sea urchin larvae near metamorphosis form an adult rudiment that is a complex of the juvenile structures. However, the details of the mechanisms that form the adult rudiment are unknown. The temnopleurid sea urchins Temnopleurus toreumaticus and Temnopleurus reevesii occur in Japan, but the development of their juvenile morphology has not been described. In this study, we observed their development by light and scanning electron microscopy to follow the adult rudiment formation and to consider the mechanisms of evolution of juvenile morphology in sea urchins. Results: The prism embryos of both species formed two primary pore canals that elongated from the left and right coelomic sacs; the left canal connected the presumptive water vascular system to the hydropore. These organs were formed bilaterally and symmetrically in T. toreumaticus and with left-right asymmetry in T. reevesii. The right canal of both species had degenerated by the four-armed larval stage. At the prism stage, about six cells from the left oral ectoderm located between the left post-oral arm and the oral lobe formed a cell mass. The cell mass grew in diameter stepwise in T. toreumaticus by cell migration and by the formation of an epithelial pouch during the four-to six-armed larval stages and more rapidly in T. reevesii by the formation of a thin epithelium during the six-armed larval stage. In both species, the adult rudiment was formed by attachment of the cell mass to the hydrocoel. The larvae of T. toreumaticus metamorphosed from a tiny hole on the left ectoderm between the post-oral and postero-dorsal arms.Conclusions: These findings suggest that the developmental process involving the formation of two primary pore canals and a cell mass may have been acquired and conserved as common traits in the early development of indirect-developing temnopleurid species during evolutionary divergence from the Cidaroida.
Adult rudiment formation in some temnopleurids begins with the formation of a cell mass that is pinched off the left ectoderm in early larval development. The cell mass forms the adult rudiment with the left coelomic pouch of the mesodermal region. However, details of the mechanisms to establish position of the cell mass are still unknown. We analyzed the inhibiting effect of Nodal, a factor for morphogenesis of the oral region and right side, for location of the cell mass, in four temnopleurids. Pulse inhibition, at least 5 min inhibition, during coelomic pouch formation allowed a cell mass to form on both sides, whereas treatments after that period did not. These results indicate that Nodal signaling controls the oral-aboral axis before gastrulation and then affects the position of the cell mass and adult rudiment up to coelomic pouch formation. They also indicate that the position of the adult rudiment under Nodal signaling pathways is conserved in temnopleurids, as adult rudiment formation is dependent on the cell mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.