Cycloreversion processes of three photochromic diarylethene derivatives with extremely low one-photon reaction yields (5.0 x 10(-5) to 1.5 x 10(-2)) were investigated by means of femtosecond and picosecond laser photolysis methods. Femtosecond visible laser photolysis revealed that the excited state of the closed form in these three derivatives decayed into the ground state with 0.7-8 ps time constants and with low cycloreversion yields that were consistent with those obtained by steady-state light irradiation. On the other hand, the cycloreversion reaction was drastically enhanced by picosecond 532 nm laser excitation for all of the three derivatives. From excitation intensity effects of the reaction yield and dynamic behavior, it was found that the successive two-photon absorption process leading to higher excited states opened an efficient cycloreversion channel, with reaction yields of 0.3-0.5. These results are discussed from the viewpoint of the one-photon inerasable but two-photon erasable photochromic system.
The behavior of proteins in crowded environments is dominated by protein-crowder interactions (the entropic/excluded volume effect) and protein-protein interactions (the soft chemical effect). The details of these interactions, however, are not fully understood. In this study, the behavior of bovine serum albumin (BSA) in crowded environments, including high protein concentrations and in the presence of another protein, was investigated by Raman spectroscopy. A detailed analysis of the water, Tyr, and Phe Raman bands revealed that the excluded volume effect with an increase in the protein concentration changed the local environment of hydrophobic residues. In contrast, no specific changes to the secondary structure were observed from the analysis of the concentration dependence of the amide I band. BSA was experimentally shown to adopt a more compact state in the presence of the crowding agent. Moreover, H-D exchange experiments of the amide I band revealed that the intramolecular hydrogen bonds of BSA were strengthened in the presence of the protein crowder. Thus, the Raman spectroscopy results have revealed the molecular behavior of proteins in crowded environments by extracting information about the excluded volume effect, soft chemical interactions, and the hydration effect.
8-Anilino-1-naphthalenesulfonic acid (ANS) is used as a hydrophobic fluorescence probe due to its high intensity in hydrophobic environments, and also as a microenvironment probe because of its unique ability to exhibit peak shift and intensity change depending on the surrounding solvent environment. The difference in fluorescence can not only be caused by the microenvironment but can also be affected by the binding affinity, which is represented by the binding constant (K). However, the overall binding process considering the binding constant is not fully understood, which requires the ANS fluorescence binding mechanism to be examined. In this study, to reveal the rate-limiting step of the ANS–protein binding process, protein concentration-dependent measurements of the ANS fluorescence of lysozyme and bovine serum albumin were performed, and the binding constants were analyzed. The results suggest that the main factor of the binding process is the microenvironment at the binding site, which restricts the attached ANS molecule, rather than the attractive diffusion-limited association. The molecular mechanism of ANS–protein binding will help us to interpret the molecular motions of ANS molecules at the binding site in detail, especially with respect to an equilibrium perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.