In this study we extend tetramerization technology to T-cell receptors (TCRs). We identified TCR alpha beta pairs in the absence of accessory molecules, ensuring isolation of high-affinity TCRs that maintain stable binding characteristics after tetramerization. Subtle changes in cognate peptide levels bound to the class I molecule were accurately reflected by parallel changes in the mean fluorescence intensity of cells that bound TCR tetramers, allowing us to accurately assess the binding affinity of a panel of peptides to major histocompatibility complex (MHC) class I. Using a TCR tetramer specific for the Mamu-A(*)01 allele, we identified animals expressing this restricting class I allele from a large cohort of outbred rhesus macaques. TCR tetramers should facilitate analysis of the MHC-peptide interface and, more generally, the design of immunotherapeutics and vaccines.
Immunodominance is a common feature of Ag-specific CTL responses to infection or vaccines. Understanding the basis of immunodominance is crucial to understanding cellular immunity and viral evasion mechanisms and will provide a rational approach for improving HIV vaccine design. This study was performed comparing CTLs specific for the SIV Gag p11C (dominant) and SIV Pol p68A (subdominant) epitopes that are consistently generated in Mamu-A*01+ rhesus monkeys exposed to SIV proteins. Additionally, vaccinated monkeys were used to prevent any issues of antigenic variation or dynamic changes in CTL responses by continuous Ag exposure. Analysis of the TCR repertoire revealed the usage of higher numbers of TCR clones by the dominant p11C-specific CTL population. Preferential usage of specific TCRs and the in vitro functional TCR-α- and -β-chain-pairing assay suggests that every peptide/MHC complex may only be recognized by a limited number of unique combinations of α- and β-chain pairs. The wider array of TCR clones used by the dominant p11C-specific CTL population might be explained by the higher probability of generating those specific TCR chain pairs. Our data suggest that Ag-specific naive T cell precursor frequency may be predetermined and that this process dictates immunodominance of SIV-specific CD8+ T cell responses. These findings will aid in understanding immunodominance and designing new approaches to modulate CTL responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.