Elements of Artificial Neural Networks provides a clearly organized general introduction, focusing on a broad range of algorithms, for students and others who want to use neural networks rather than simply study them.
The authors, who have been developing and team teaching the material in a one-semester course over the past six years, describe most of the basic neural network models (with several detailed solved examples) and discuss the rationale and advantages of the models, as well as their limitations. The approach is practical and open-minded and requires very little mathematical or technical background. Written from a computer science and statistics point of view, the text stresses links to contiguous fields and can easily serve as a first course for students in economics and management.
The opening chapter sets the stage, presenting the basic concepts in a clear and objective way and tackling important—yet rarely addressed—questions related to the use of neural networks in practical situations. Subsequent chapters on supervised learning (single layer and multilayer networks), unsupervised learning, and associative models are structured around classes of problems to which networks can be applied. Applications are discussed along with the algorithms. A separate chapter takes up optimization methods.
The most frequently used algorithms, such as backpropagation, are introduced early on, right after perceptrons, so that these can form the basis for initiating course projects. Algorithms published as late as 1995 are also included. All of the algorithms are presented using block-structured pseudo-code, and exercises are provided throughout. Software implementing many commonly used neural network algorithms is available at the book's website.
Transparency masters, including abbreviated text and figures for the entire book, are available for instructors using the text.
Bradford Books imprint
The rate of convergence of net output error is very low when training feedforward neural networks for multiclass problems using the backpropagation algorithm. While backpropagation will reduce the Euclidean distance between the actual and desired output vectors, the differences between some of the components of these vectors increase in the first iteration. Furthermore, the magnitudes of subsequent weight changes in each iteration are very small, so that many iterations are required to compensate for the increased error in some components in the initial iterations. Our approach is to use a modular network architecture, reducing a K-class problem to a set of K two-class problems, with a separately trained network for each of the simpler problems. Speedups of one order of magnitude have been obtained experimentally, and in some cases convergence was possible using the modular approach but not using a nonmodular network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.