Compressive sensing provides a new idea for machinery monitoring, which greatly reduces the burden on data transmission. After that, the compressed signal will be used for fault diagnosis by feature extraction and fault classification. However, traditional fault diagnosis heavily depends on the prior knowledge and requires a signal reconstruction which will cost great time consumption. For this problem, a deep belief network (DBN) is used here for fault detection directly on compressed signal. This is the first time DBN is combined with the compressive sensing. The PCA analysis shows that DBN has successfully separated different features. The DBN method which is tested on compressed gearbox signal, achieves 92.5 % accuracy for 25 % compressed signal. We compare the DBN on both compressed and reconstructed signal, and find that the DBN using compressed signal not only achieves better accuracies, but also costs less time when compression ratio is less than 0.35. Moreover, the results have been compared with other classification methods.
The safe operation of diesel engines performs a vital function in industrial production and life. Because diesel engines often work in harsh environmental conditions, they are prone to failure. Therefore, this paper proposes a fault analysis method based on a combination of optimized variational mode decomposition (VMD) and improved convolutional neural networks (CNN) to address the necessary need for preventive maintenance of diesel engines. The authentic vibration sign is first decomposed by using the (VMD) algorithm, then the greatest range of decomposition layers is decided by using scattering entropy and the useful components are preferentially chosen for reconstruction. The continuous wavelet transform (CWT) records preprocessing method is then delivered to radically change the noise-reduced vibration sign into a time-frequency map, which is fed into the CNN for model coaching and extraction of fault features. Finally, fault classification is realized by support vector machine (SVM) with excellent classification performance. Through preset fault experiments on diesel engines, it is established that the technique proposed in this paper can successfully identify fault states, and the classification accuracy is higher than alternative methods.
Equipment degradation state recognition and prognosis are considered two significant parts of a prognostics and health management (PHM) system that help to reduce downtime and decrease economic losses. In this paper, a sparse representation (SR) feature is proposed as a new degradation feature, and the hidden semi-Markov model (HSMM) is established. The new method offers three significant advantages over the traditional HSMM. (1) Since the degradation information is incomplete, a Gaussian mixture model (GMM) is used here for degradation data clustering and state division. (2) A new degradation feature based on the wavelet packet transform (WPT) and SR can better extract the structural information of the collected signal and reflect the degradation characteristics. (3) To conduct remaining useful life (RUL) predictions, an improved model is proposed, which adds a control variable that can dynamically adjust the state duration. The effectiveness of the proposed method is demonstrated using 8 groups of bearing data from the Center for Intelligent Maintenance Systems (IMS). The results show that the HSMM with the SR feature achieves the best recognition accuracy, of 85.28%. Moreover, the improved prediction model achieves a prediction accuracy of 86.11% on average for 8 bearings.
This paper proposes an adaptive fault diagnosis algorithm based on vibration signals for fault diagnosis of bearings and diesel engines. First, the improved nonlinear gray wolf optimization algorithm (NGWO) is adopted to optimize the key parameter for variational mode decomposition (VMD) with the power spectral entropy as the fitness value. Meanwhile, adaptive noise reduction of the signal is realized. Then, sensitive fault features of bearings and diesel engines are selected through a feature sensitivity analysis on the vibration signals. Also, a single-layer sparse autoencoder is used to align the feature dimensions of each type of data to construct feature matrix samples. Subsequently, a deep neural network (DNN) consisting of a two-layer stacked sparse autoencoder (SSAE) and a Softmax classification layer is constructed to realize failure mode recognition. During the training process of DNN, a surrogate model formed by NGWO and a back propagation neural network is employed to optimize the hyperparameters of SSAE. Finally, to verify the effectiveness of the proposed fault diagnosis algorithm, fault diagnosis experiments are conducted on the fault data set of bearings and diesel engines. The diagnosis results show that the proposed method achieves high-precision fault diagnosis for bearings and diesel engines and performs stably for small samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.