Low-copy-number plasmids generally encode a partitioning system to ensure proper segregation after replication. Little is known about partitioning of linear plasmids in Streptomyces. SLP2 is a 50-kb low-copynumber linear plasmid in Streptomyces lividans, which contains a typical parAB partitioning operon. In S. lividans and Streptomyces coelicolor, a parAB deletion resulted in moderate plasmid loss and growth retardation of colonies. The latter was caused by conjugal transfer from plasmid-containing hyphae to plasmidless hyphae. Deletion of the transfer (traB) gene eliminated conjugal transfer, lessened the growth retardation of colonies, and increased plasmid loss through sporulation cycles. The additional deletion of an intrahyphal spread gene (spd1) caused almost complete plasmid loss in a sporulation cycle and eliminated all growth retardation. Moreover, deletion of spd1 alone severely reduced conjugal transfer and stability of SLP2 in S. coelicolor M145 but had no effect on S. lividans TK64. These results revealed the following three systems for SLP2 maintenance: partitioning and spread for moving the plasmid DNA along the hyphae and into spores and conjugal transfer for rescuing plasmidless hyphae. In S. lividans, both spread and partitioning appear to overlap functionally, but in S. coelicolor, spread appears to play the main role.
Filamentous bacteria of the genus Streptomyces possess linear chromosomes and linear plasmids. Theoretically, linear replicons may not need a decatenase for post-replicational separation of daughter molecules. Yet, Streptomyces contain parC and parE that encode the subunits for the decatenase topoisomerase IV. The linear replicons of Streptomyces adopt a circular configuration in vivo through telomere–telomere interaction, which would require decatenation, if the circular configuration persists through replication. We investigated whether topoisomerase IV is required for separation of the linear replicons in Streptomyces. Deletion of parE from the Streptomyces coelicolor chromosome was achieved, when parE was provided on a plasmid. Subsequently, the plasmid was eliminated at high temperature, and ΔparE mutants were obtained. These results indicated that topoisomerase IV was not essential for Streptomyces. Presumably, the telomere–telomere association may be resolved during or after replication to separate the daughter chromosomes. Nevertheless, the mutants exhibited retarded growth, defective sporulation and temperature sensitivity. In the mutants, circular plasmids could not replicate, and spontaneous circularization of the chromosome was not observed, indicating that topoisomerase IV was required for decatenation of circular replicons. Moreover, site-specific integration of a plasmid is impaired in the mutants, suggesting the formation of DNA knots during integration, which must be resolved by topoisomerase IV.
Gram-positive bacteria of the genus Streptomyces possess linear chromosomes and linear plasmids capped by terminal proteins covalently bound to the 59 ends of the DNA. The linearity of Streptomyces chromosomes raises the question of how they are transferred during conjugation, particularly when the mobilizing plasmids are also linear. The classical rolling circle replication model for transfer of circular plasmids and chromosomes from an internal origin cannot be applied to this situation. Instead it has been proposed that linear Streptomyces plasmids mobilize themselves and the linear chromosomes from their telomeres using terminal-protein-primed DNA synthesis. In support of this 'end first' model, we found that artificially circularized Streptomyces chromosomes could not be mobilized by linear plasmids (SLP2 and SCP1), while linear chromosomes could. In comparison, a circular plasmid (pIJ303) could mobilize both circular and linear chromosomes at the same efficiencies. Interestingly, artificially circularized SLP2 exhibited partial self-transfer capability, indicating that, being a composite replicon, it may have acquired the additional internal origin of transfer from an ancestral circular plasmid during evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.