The recovery and separation of rare earth elements (REEs) are of national importance owing to the specific usages, high demand, and low supply of these elements. In this research, we have investigated the adsorption of rare earth elements onto DNA-functionalized mesoporous carbons with a BET surface area of 605 m 2 /g and a median mesopore width of 48 Å. Three types of single-stranded DNA, one with 100 base units of thymine, another with 20 units of thymine, and the third, a 2000 unit long DNA from salmon milt were grafted on the carboxylated mesoporous carbon surface. All of the DNA-functionalized mesoporous carbons demonstrated higher adsorption of REEs compared to pristine mesoporous carbon and DNA grafted with 100 units of thymine demonstrated slightly higher adsorbed amounts compared to others. Pure neodymium (Nd(III)) adsorption in the aqueous phase demonstrated an adsorbed amount of 110.4 mg/g with respect to the initial concentration of 500 mg/g. A pH variation study with pure Nd(III) demonstrated that the adsorbed amount is higher at elevated pH compared to that at lower pH, thereby suggesting possible recovery at lower pH. Adsorption of a mixture of 16 REEs, including
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.