The site-specific incorporation of bioorthogonal groups via genetic code expansion provides a powerful general strategy for site-specifically labelling proteins with any probe. However, the slow reactivity of the bioorthogonal functional groups that can be encoded genetically limits the utility of this strategy. We demonstrate the genetic encoding of a norbornene amino acid using the pyrrolysyl tRNA synthetase/tRNACUA pair in Escherichia coli and mammalian cells. We developed a series of tetrazine-based probes that exhibit `turn-on' fluorescence on their rapid reaction with norbornenes. We demonstrate that the labelling of an encoded norbornene is specific with respect to the entire soluble E. coli proteome and thousands of times faster than established encodable bioorthogonal reactions. We show explicitly the advantages of this approach over state-of-the-art bioorthogonal reactions for protein labelling in vitro and on mammalian cells, and demonstrate the rapid bioorthogonal site-specific labelling of a protein on the mammalian cell surface.
The site-specific
incorporation of three new coumarin lysine analogues
into proteins was achieved in bacterial and mammalian cells using
an engineered pyrrolysyl-tRNA synthetase system. The genetically encoded
coumarin lysines were successfully applied as fluorescent cellular
probes for protein localization and for the optical activation of
protein function. As a proof-of-principle, photoregulation of firefly
luciferase was achieved in live cells by caging a key lysine residue,
and excellent OFF to ON light-switching ratios were observed. Furthermore,
two-photon and single-photon optochemical control of EGFP maturation
was demonstrated, enabling the use of different, potentially orthogonal
excitation wavelengths (365, 405, and 760 nm) for the sequential activation
of protein function in live cells. These results demonstrate that
coumarin lysines are a new and valuable class of optical probes that
can be used for the investigation and regulation of protein structure,
dynamics, function, and localization in live cells. The small size
of coumarin, the site-specific incorporation, the application as both
a light-activated caging group and as a fluorescent probe, and the
broad range of excitation wavelengths are advantageous over other
genetically encoded photocontrol systems and provide a precise and
multifunctional tool for cellular biology.
We have identified and characterized a novel C. elegans gene, ced-12, that functions in the conserved GTPase signaling pathway mediated by CED-2/Crkll, CED-5/DOCK180, and CED-10/Rac to control cell migration and phagocytosis of apoptotic cells. We provide evidence that ced-12 likely acts upstream of ced-10 during cell migration and phagocytosis and that CED-12 physically interacts with CED-5 and forms a ternary complex with CED-2 in vitro. We propose that the formation and localization of a CED-2-CED-5-CED-12 ternary complex to the plasma membrane activates CED-10, leading to the cytoskeletal reorganization that occurs in the polarized extension of cell surfaces in engulfing cells and migrating cells. We suggest that CED-12 counterparts in higher organisms regulate cytoskeleton dynamics, as CED-12 does in C. elegans.
Subsets of activated CD8+ lymphocytes defined by membrane expression of the activation antigens HLA-DR and CD38 were counted by three-color flow cytometry in homosexual men who subsequently became seropositive for human immunodeficiency virus type 1 (HIV). Profound CD8+ cell activation was seen in all subjects at seroconversion and 6 and 12 months later. The HLA-DR+ CD38+ CD8+ cell population, which has potent direct HIV cytotoxic T cell activity, was markedly elevated at seroconversion in all subjects. In some men, these levels remained elevated throughout the first year of infection. During the next 5 years, these men had stable CD4+ cell levels, whereas the others did not. Long-term survivors (seropositive for 9 years, > 800 CD4+ cells/mm3) also had elevated levels of this subset, despite few other activated CD8+ cells. Thus, selective elevation of HLA-DR+ CD38- CD8+ cells was a marker of subsequent stable HIV disease.
Photocrosslinking is an important approach that allows discovery and detailed investigation of protein-protein, protein-oligonucleotide, and protein-small molecule interactions with high temporal and spatial resolution. A major limitation to the universal application of this methodology is the sitespecific introduction of efficient aliphatic photocrosslinking probes into proteins of interest. Here, we report a novel aliphatic diazirine amino acid and its genetically encoded, site-specific incorporation into proteins in bacterial and mammalian cells. Furthermore, we demonstrate efficient photocrosslinking of a test protein in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.