Molybdenum disulfide (MoS2) is systematically studied using Raman spectroscopy with ultraviolet and visible laser lines. It is shown that only the Raman frequencies of $ E_{2{\rm g}}^1 $ and $ A_{{\rm 1g}}^{} $ peaks vary monotonously with the layer number of ultrathin MoS2 flakes, while intensities or widths of the peaks vary arbitrarily. The coupling between electronic transitions and phonons are found to become weaker when the layer number of MoS2 decreases, attributed to the increased electronic transition energies or elongated intralayer atomic bonds in ultrathin MoS2. The asymmetric Raman peak at 454 cm−1, which has been regarded as the overtone of longitudinal optical M phonons in bulk MoS2, is actually a combinational band involving a longitudinal acoustic mode (LA(M)) and an optical mode ($ A_{{\rm 2u}}^{} $). Our findings suggest a clear evolution of the coupling between electronic transition and phonon when MoS2 is scaled down from three‐ to two‐dimensional geometry.
The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined ‘IMF’ classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F).
Over the last few decades, the excess exploitation of our planet and degradation of environment have gone up at an alarming rate. Environmental problems, especially air and water pollution, which takes a huge number of years to recover, have become the major concern affecting the progress of human society. The overwhelming threats have driven global research and innovation in the development of advanced technology and devices toward a cleaner environment. In this context, the generation of functional one-dimensional (1-D) nanomaterials has become an area of intense interest from both academia and industry due to their unique advantages for environmental applications. Electrospinning is recognized as the most powerful technique for producing 1-D composite nanofibers via facile incorporation of active ingredients in the solutions for electrospinning or by some posttreatment process. In this review, we give an overview on the latest research progress in the fabrication and utilization of functional polymer/ceramic/carbon nanofibers generated by electrospinning for air and water purification, as well as their applications as sensors for pollutant monitoring and control. We also present the perspectives and challenges of the current electrospinning technique for environmental applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.