We have performed a whole-genome-sequence survey for the gregarine, Ascogregarina taiwanensis and herein describe both features unique to this early diverging apicomplexan and properties that unite it with Cryptosporidium, the Coccidia, and the Apicomplexa. Phylogenetic trees inferred from a concatenated protein sequence comprised of 10,750 amino acid positions, as well as the large subunit rRNA genes, robustly support phylogenetic affinity of Ascogregarina with Cryptosporidium at the base of the apicomplexan clade. Unlike Cryptosporidium, Ascogregarina possesses numerous mitochondrion-associated pathways and proteins, including enzymes within the Krebs cycle and a cytochrome-based respiratory chain. Ascogregarina further differs in the capacity for de novo synthesis of pyrimidines and amino acids. Ascogregarina shares with Cryptosporidium a Type I fatty acid synthase and likely a polyketide synthase. Cryptosporidium and Ascogregarina possess a large repertoire of multidomain surface proteins that align it with Toxoplasma and are proposed to be involved in coccidian-like functions. Four families of retrotransposable elements were identified, and thus, retroelements are present in Ascogregarina and Eimeria but not in other apicomplexans that have been analyzed. The sum observations suggest that Ascogregarina and Cryptosporidium share numerous molecular similarities, not only including coccidian-like features to the exclusion of Haemosporidia and Piroplasmida but also differ from each other significantly in their metabolic capacity.
Mainly through vector transmission, domestic cats and dogs are infected by several Bartonella spp. and represent a large reservoir for human infections. This study investigated the relationship of prevalences of Bartonella infection in shelter dogs and cats and various ectoparasite species infesting them (fleas, ticks, and lice). Moreover, relationships between Bartonella infection and animal gender and age and presence of ectoparasites were analyzed. Blood samples were collected from 120 dogs and 103 cats. There were 386 ticks and 36 fleas harvested on these dogs, and 141 fleas, 4 ticks, and 2 lice harvested on these cats. Isolation/detection of Bartonella sp. was performed by culture, polymerase chain reaction (PCR), and partial sequencing. Bartonella was isolated from 21 (20.4%) cats and detected by PCR from 20 (19.4%) cats, 2 (1.7%) dogs, 55 (39%) fleas collected from cats, 28 (10%) ticks DNA samples, and 1 (2.8%) flea collected from dogs. When combining culture and PCR data, 27 cats and 55 fleas collected on cats were positive for Bartonella henselae or Bartonella clarridgeiae, but none were coinfected. Approximately half of the B. henselae isolates from 21 cats were B. henselae type I. Moreover, B. henselae, Bartonella phoceensis, Bartonella queenslandensis, Bartonella rattimassiliensis, Bartonella elizabethae DNA was detected in ticks collected from dogs and one flea was B. clarridgeiae PCR positive. This is the first report of such a wide variety of Bartonella spp. detected in Rhipicephalus sanguineus. Further studies are required to understand the relative importance of these ectoparasites to transmit Bartonella spp. in dogs and cats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.