Protein phosphorylation is an important modulator of many cellular processes, and identification of kinase substrates provides critical insights for signal transduction. However, this identification process is often difficult and many kinase substrates remain unexplored. Herein, a systematic proteomics approach solely depending on MS detection is reported for identifying substrates of PKA and PKG, which are suspected to have similar specificity determinants, in pregnant rat uteri. Instead of radioisotopes that are commonly used to couple with MS for substrate identification, this study developed an efficient in vitro kinase assay on depleted tissue homogenates to reveal substrate candidates directly by MS. To facilitate MS detection, exogenous phosphatases were added to remove intrinsic phosphorylation followed by a heating step to inactivate all enzymes. No observable interference caused by endogenous kinases or background phosphorylation was detected in the control experiment in which no kinase was externally added. A total of 61 and 12 substrate candidates were identified in vitro for PKA and PKG, respectively, and most of these identified sites contain consensus motifs of each kinase with only a few sites overlapped, indicating a good specificity. Moreover, differential phosphoproteomics analysis using stable isotope dimethyl labeling and MS was performed to detect the change of protein phosphorylation upon kinase stimulation in vivo. Four identified in vitro PKA substrates including three reported sites on HSP27 or filamin A were significantly phosphorylated in vivo, giving them high confidence as physiological substrates in pregnant rat uteri. Moreover, telokin, a known PKG substrate on S1880, and actin-binding proteins such as Arp 3, titin, and desmuslin were also identified to be in vitro PKG substrates in pregnant rat uteri. These proteins are all expected to be involved in the regulation of actin-mediated cytoskeletal remodeling.
Quantitative analysis of protein phosphorylation provides important insights into molecular signaling mechanisms and a better understanding of many cellular processes. In this study, we coupled stable isotope dimethyl labeling with immobilized metal affinity chromatography (IMAC) enrichment to quantify protein phosphorylation at MS-determined phosphorylation sites. The proposed method was first characterized using alpha- and beta-casein as two model phosphoproteins, and further applied to the analysis of pregnant rat uteri with and without treatment with 8-bromo-cGMP. Dimethyl labeling has several significant advantages: global, fast (within 5 min) and complete (near 100%). Our results indicate that the labeling has no adverse effect on the IMAC enrichment for tryptic peptides having single and multiple phosphorylation sites. Moreover, the enhanced a1 signal and the complete reaction by dimethyl labeling provide unequivocal identification of both the N-terminal amino acid and the number of the labeling site. Using these two criteria in data validation, which is particularly important for identifying phosphoproteins, we found that the confidence in interpreting dimethyl-labeled peptides had greatly increased. In the analysis of late gestation rat uteri, the abundance ratio between treated and un-treated phosphopeptide signals ranged from 0.51 to 1.69 with an average of around 1.01 +/- 0.25. The obtained ratio of the phosphorylation levels at Ser 15 of HSP27 was further confirmed by the consistent results obtained from Western blot analyses. Based on the analysis of the results, it is interesting to note that the activated cGMP dependent protein kinase G (PKG) seems to affect the phosphorylation of proteins associated with the inhibition of cell migration and proliferation, redistribution of actin-associated proteins, and the increase of protein synthesis in late-gestation uteri. These observations provide important evidence suggesting that activated PKG may play a critical role in the shift of pregnant uteri from proliferative to hypertrophic states.
17β-Estradiol (E2) regulates transcriptional activity partly by inducing protein-kinase cascades, leading to the phosphorylation of estrogen receptors (ERs) and other functional proteins. Many of these phosphorylation events are also modulated by growth factors. To gain an insight into E2-modulated protein phosphorylation, we applied quantitative phosphoproteomics to investigate global changes in protein phosphorylation induced by E2 in MCF-7 cells. Proteomic analyses using stable isotope dimethyl labeling coupled with immobilized metal affinity chromatography-hydrophilic interaction liquid chromatography (IMAC-HILIC) fractionation and nanoLC-MS/MS identified and quantified 2857 unique phosphorylation sites in 1338 phosphoproteins from 1 mg of total cellular protein. In addition to S118 of ERα, a 30-min E2 treatment significantly altered the status of 403 phosphorylation sites, including 112 novel sites. Interestingly, the substrate motifs for ERK1/2 were largely enriched in both the up-regulated and down-regulated phosphorylation sites. An increase in the phosphorylation on either the T202 or Y204 sites of ERK1 was observed after E2 treatment, while dual phosphorylation on both sites were not detected, implying that a feedback loop to deactivate MAPK signaling was achieved during a 30-min E2 treatment. In contrast, the PKA and CKII substrate motifs were majorly enriched among the up-regulated phosphorylation sites. Western blot analysis confirmed that E2 increased the phosphorylation level of S226 within a CKII motif of HSP90β by a factor of 2- to 3-fold without changing the total protein expression level. E2 also up-regulated phosphorylations of S255 in HSP90β and S353 within a CKII motif of HSP90α. These results indicated that E2 may modulate gene transcription by affecting the stability, function, and activity of many regulators through a HSP90 phosphorylation-mediated chaperoning process. This study, using a quantitative, multidimensional separation phosphoproteomic approach that required a relatively low amount of cells, provides new insights into the diversity, variability, and dynamic nature of the protein phosphorylation/dephosphorylation elicited by E2.
Protein enrichment is essential for biological samples that contain low protein concentrations, especially for proteomic studies that require sufficient quantities for subsequent MS analysis. Traditional precipitation methods, however, are limited in the sample volume and protein concentration required to cause efficient precipitations. We showed that gold nanoparticles (Au-NPs) can be easily applied to concentrate proteins from more than 15 mL of human urine, in which the total protein concentration is less than 1.4 ppm. Moreover, Au-NP-aggregated proteins can be directly applied to gel electrophoresis for Au-NP-protein dissociation followed by free protein separation as well as for the subsequent in-gel digestion and protein identification by mass spectrometry. We compared this method with trichloroacetic acid (TCA) precipitation method, one of the most common precipitation methods, and TCA method showed no enrichment effect for protein samples with large volumes (>2 mL) or with low protein concentrations (4 ppm). Therefore, Au-NP aggregation is not only a simple and efficient method for enriching a broad range of proteins, it is also particularly useful for concentrating proteins from a relatively large volume of dilute biological fluids, under which TCA method is ineffective.
Background:Nucleolin is an RNA-binding protein that regulates RNA stability. Results: CDK1 phosphorylates nucleolin at Thr-641/707 to stabilize nucleolin in a heat shock protein 90-dependent manner. Conclusion: Nucleolin stabilized by Hsp90 contributes to lung tumorigenesis by increasing the level of many tumor-related mRNAs during mitosis. Significance: Cancer cells exploit the increase in Hsp90 to maintain nucleolin stability and subsequently to increase the nucleus mRNA levels present in the cell nucleus, which might benefit tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.