Preface Forces associated with blood flow are major determinants of vascular morphogenesis and physiology. Blood flow is crucial for blood vessel development during embryogenesis and for regulation of vessel diameter in adult life. It is also a key factor in atherosclerosis, which, despite the systemic nature of major risk factors, occurs mainly at regions of arteries that experience disturbances in fluid flow. Recent data have highlighted the potential endothelial mechanotransducers that mediate responses to flow, the effects of atheroprotective versus atherogenic flow, and the mechanisms that contribute to progression of the disease over time and how systemic factors interact with flow patterns to cause atherosclerosis.
Fibronectin matrix assembly is a multistep, integrin-dependent process. To investigate the role of integrin dynamics in fibronectin fibrillogenesis, we developed an antibody-chasing technique for simultaneous tracking of two integrin populations by different antibodies. We established that whereas the vitronectin receptor αvβ3 remains within focal contacts, the fibronectin receptor α5β1 translocates from focal contacts into and along extracellular matrix (ECM) contacts. This escalator-like translocation occurs relative to the focal contacts at 6.5 ± 0.7 μm/h and is independent of cell migration. It is induced by ligation of α5β1 integrins and depends on interactions with a functional actin cytoskeleton and vitronectin receptor ligation. During cell spreading, translocation of ligand-occupied α5β1 integrins away from focal contacts and along bundles of actin filaments generates ECM contacts. Tensin is a primary cytoskeletal component of these ECM contacts, and a novel dominant-negative inhibitor of tensin blocked ECM contact formation, integrin translocation, and fibronectin fibrillogenesis without affecting focal contacts. We propose that translocating α5β1 integrins induce initial fibronectin fibrillogenesis by transmitting cytoskeleton-generated tension to extracellular fibronectin molecules. Blocking this integrin translocation by a variety of treatments prevents the formation of ECM contacts and fibronectin fibrillogenesis. These studies identify a localized, directional, integrin translocation mechanism for matrix assembly.
This review summarizes the current data on the effects of smoking and tobacco on the immune system and its potential impact on periodontal health. Smokers are 2.5-6 times more likely to develop periodontal disease than non-smokers, and there is evidence for a direct correlation between the number of cigarettes smoked and the risk of developing disease. Tobacco users also tend to exhibit increased severity of periodontal disease. Direct correlations between tobacco use and increased attachment loss and pocket depth and reduced bone crest height have been reported. Although the correlation between tobacco use and periodontal disease is quite strong, the role of tobacco in the pathogenesis of periodontal disease is uncertain. Recent studies indicate that one potential mechanism is that tobacco use exacerbates periodontal disease because it alters the immune response to periodontal pathogens. Indeed, smokers exhibit increased numbers of peripheral blood mononuclear phagocytes which appear to be functionally compromised. Inadequate phagocyte activity could reduce the clearance of pathogens from the oral cavity and thereby facilitate the development of periodontal disease. Tobacco-exposed B- and T-lymphocytes exhibit reduced proliferative capacities which could limit the production of protective immunoglobulins against oral pathogens. The risk factors for periodontal disease can be broadly classified as genetic, environmental, host-response factors, and host-related factors such as age. Tobacco, an environmental factor, undermines the host response and may facilitate the development and progression of periodontal disease. This review highlights the inter-relatedness of two of the risk factors associated with periodontal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.