Unresectable hepatocellular carcinoma (HCC) has a poor therapeutic outcome. We report here on a 40-year-old male HCC patient who had undergone partial hepatectomy and was refractory to therapeutic embolization. In addition, the tumour expressed phosphorylated extracellular signal-regulated kinase and CD34. Sorafenib was administered as salvage treatment and resulted in a rapid decline in alpha-fetoprotein (AFP) levels. However, this was accompanied by a grade 3 skin reaction, which improved as sorafenib dosage was gradually reduced. Unfortunately, reducing the dose of sorafenib also resulted in a rebound in AFP levels and portal vein thrombosis was noted thereafter. Sorafenib 800 mg/day was resumed, but the tumour failed to respond. Intensity-modulated radiation therapy (IMRT) combined with sorafenib was administered, resulting in marked tumour shrinkage and causing recurrence of the systemic skin reaction and development of photosensitivity. The patient survived for 20 months after the start of sorafenib treatment. This case suggests that the combination of sorafenib and IMRT might provide clinical benefits in patients with HCC who express potential targets but fail to respond to sorafenib; however, skin reactions should be monitored.
Zoledronic acid (ZOL), an effective nitrogen-containing bisphosphonate against excessive bone loss, has been shown affecting the function of cells of both innate and acquired immunity. In this study, we tested the effect of ZOL on differentiation and maturation of human myeloid dendritic cells (DC). When ZOL (1.1 to 10 microM) was added to the culture of starting monocytes, but not to immature DC, the recovery rate of DC was markedly reduced in a concentration-dependent manner. The mature DC differentiated in the presence of ZOL had fewer and shorter cell projections. ZOL treatment affected DC differentiation and maturation in terms of lower expression of CD1a, CD11c, CD83, CD86, DC-SIGN, HLA-DR, and, in contrast, higher expression of CD80. IL-10 production by DC was inhibited by ZOL treatment whereas IL-12p70 secretion remained unchanged. Interestingly, ZOL augmented the allostimulatory activity of DC on naive CD4(++)CD45(+)RA(++) T cells in terms of their proliferation and interferon-gamma production. Addition of geranylgeraniol abrogated the effect of ZOL on DC differentiation and prenylation of Rap1A. It suggests that ZOL redirects DC differentiation toward a state of atypical maturation with allostimulatory function and this effect may go through prevention of Rap1A prenylation.
WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA doublestrand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.