A real-time wireless electroencephalogram (EEG)-based brain-computer interface (BCI) system for drowsiness detection has been proposed. Drowsy driving has been implicated as a causal factor in many accidents. Therefore, real-time drowsiness monitoring can prevent traffic accidents effectively. However, current BCI systems are usually large and have to transmit an EEG signal to a back-end personal computer to process the EEG signal. In this study, a novel BCI system was developed to monitor the human cognitive state and provide biofeedback to the driver when drowsy state occurs. The proposed system consists of a wireless physiological signal-acquisition module and an embedded signal-processing module. Here, the physiological signal-acquisition module and embedded signal-processing module were designed for long-term EEG monitoring and real-time drowsiness detection, respectively. The advantages of low owner consumption and small volume of the proposed system are suitable for car applications. Moreover, a real-time drowsiness detection algorithm was also developed and implemented in this system. The experiment results demonstrated the feasibility of our proposed BCI system in a practical driving application.
We study the effects of metallic doping on the electronic properties of graphene using density functional theory in the local density approximation in the presence of a local charging energy (LDA+U). The electronic properties are sensitive to whether graphene is doped with alkali or transition metals. We estimate the the charge transfer from a single layer of Potassium on top of graphene in terms of the local charging energy of the graphene sheet. The coating of graphene with a non-magnetic layer of Palladium, on the other hand, can lead to a magnetic instability in coated graphene due to the hybridization between the transition-metal and the carbon orbitals.
A generalized EEG-based Neural Fuzzy system to predict driver's drowsiness was proposed in this study. Driver's drowsy state monitoring system has been implicated as a causal factor for the safety driving issue, especially when the driver fell asleep or distracted in driving. However, the difficulties in developing such a system are lack of significant index for detecting the driver's drowsy state in real-time and the interference of the complicated noise in a realistic and dynamic driving environment. In our past studies, we found that the electroencephalogram (EEG) power spectrum changes were highly correlated with the driver's behavior performance especially the occipital component. Different from presented subject-dependent drowsy state monitor systems, whose system performance may decrease rapidly when different subject applies with the drowsiness detection model constructed by others, in this study, we proposed a generalized EEG-based Self-organizing Neural Fuzzy system to monitor and predict the driver's drowsy state with the occipital area. Two drowsiness prediction models, subject-dependent and generalized cross-subject predictors, were investigated in this study for system performance analysis. Correlation coefficients and root mean square errors are showed as the experimental results and interpreted the performances of the proposed system significantly better than using other traditional Neural Networks ( -value 0.038). Besides, the proposed EEG-based Self-organizing Neural Fuzzy system can be generalized and applied in the subjects' independent sessions. This unique advantage can be widely used in the real-life applications.
We perform first-principles calculations of the surface and bulk wave functions of the Cu(111) surface and their hybridization energies to a Co adatom, including the potential scattering from the Co. By analyzing the calculated hybridization energies, we find the bulk states dominate the contribution to the Kondo temperature, in agreement with recent experiments. Furthermore, we also calculate the tunneling conductance of a scanning tunneling microscope and compare our results with recent experiments of Co impurities in the Cu(111) surface. Good quantitative agreement is found at short parallel impurity-tip distances (<6 A). Our results indicate the need for a new formulation of the problem at larger distances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.