We present a novel hybrid algorithm, integrating a genetic algorithm (GA) and constrained differential dynamic programming (CDDP), to achieve remediation planning for an unconfined aquifer. The objective function includes both fixed and dynamic operation costs. GA determines the primary structure of the proposed algorithm, and a chromosome therein implemented by a series of binary digits represents a potential network design. The time-varying optimal operation cost associated with the network design is computed by the CDDP, in which is embedded a numerical transport model. Several computational approaches, including a chromosome bookkeeping procedure, are implemented to alleviate computational loading. Additionally, case studies that involve fixed and time-varying operating costs for confined and unconfined aquifers, respectively, are discussed to elucidate the effectiveness of the proposed algorithm. Simulation results indicate that the fixed costs markedly affect the optimal design, including the number and locations of the wells. Furthermore, the solution obtained using the confined approximation for an unconfined aquifer may be infeasible, as determined by an unconfined simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.