We determined how the perceived naturalness of music and speech (male and female talkers) signals was affected by various forms of linear filtering, some of which were intended to mimic the spectral "distortions" introduced by transducers such as microphones, loudspeakers, and earphones. The filters introduced spectral tilts and ripples of various types, variations in upper and lower cutoff frequency, and combinations of these. All of the differently filtered signals (168 conditions) were intermixed in random order within one block of trials. Levels were adjusted to give approximately equal loudness in all conditions. Listeners were required to judge the perceptual quality (naturalness) of the filtered signals on a scale from 1 to 10. For spectral ripples, perceived quality decreased with increasing ripple density up to 0.2 ripple/ERB(N) and with increasing ripple depth. Spectral tilts also degraded quality, and the effects were similar for positive and negative tilts. Ripples and/or tilts degraded quality more when they extended over a wide frequency range (87-6981 Hz) than when they extended over subranges. Low- and mid-frequency ranges were roughly equally important for music, but the mid-range was most important for speech. For music, the highest quality was obtained for the broadband signal (55-16,854 Hz). Increasing the lower cutoff frequency from 55 Hz resulted in a clear degradation of quality. There was also a distinct degradation as the upper cutoff frequency was decreased from 16,845 Hz. For speech, there was a marked degradation when the lower cutoff frequency was increased from 123 to 208 Hz and when the upper cutoff frequency was decreased from 10,869 Hz. Typical telephone bandwidth (313 to 3547 Hz) gave very poor quality.
Background Cochlear implants (CIs) successfully restore hearing in postlingually deaf adults, but in doing so impose a frequency-position function in the cochlea that may differ from the physiological one. Purpose The CI-imposed frequency-position function is determined by the frequency allocation table programmed into the listener’s speech processor and by the location of the electrode array along the cochlea. To what extent can postlingually deaf CI users successfully adapt to the difference between physiological and CI-imposed frequency-position functions? Research Design We attempt to answer the question by combining behavioral measures of electroacoustic pitch matching (PM) and measures of electrode location within the cochlea. Study Sample The participants in this study were 16 adult CI users with residual hearing who could match the pitch of acoustic pure tones presented to their unimplanted ears to the pitch resulting from stimulation of different CI electrodes. Data Collection and Analysis We obtained data for four to eight apical electrodes from 16 participants with CIs (most of whom were long-term users), and estimated electrode insertion angle for 12 of these participants. PM functions in this group were compared with the two frequency-position functions discussed above. Results Taken together, the findings were consistent with the possibility that adaptation to the frequency-position function imposed by CIs does happen, but it is not always complete. Conclusions Some electrodes continue to be perceived as higher pitched than the acoustic frequencies with which they are associated despite years of listening experience after cochlear implantation.
All hearing aids and communication devices introduce nonlinear distortion. The perception of distortion by hearing-impaired subjects was studied using artificial controlled distortions of various amounts and types. Subjects were asked to rate the perceived quality of distorted speech and music. Stimuli were subjected to frequency-dependent amplification as prescribed by the 'Cambridge formula' before presentation via Sennheiser HD580 earphones. The pattern of the ratings was reasonably consistent across subjects, but two of the eight subjects showed inconsistent results for the speech stimuli. Center clipping and soft clipping had only small effects on the ratings, while hard clipping and 'full-range' distortion had large effects. The results indicate that most hearing-impaired subjects are able to make orderly and consistent ratings of degradations in sound quality introduced by nonlinear distortion. The pattern of results could be predicted reasonably well using a model developed to account for the perception of distortion by normally hearing subjects.
Objectives This pilot study details the use of a software tool that uses continuous impedance measurement during electrode insertion, with the eventual potential to assess and optimize electrode position and reduce insertional trauma. Study Design Software development and experimental study with human cadaveric cochleae and two live surgeries. Methods A prototype program to measure intracochlear electrode impedance and display it graphically in real time has been developed. The software was evaluated in human cadaveric temporal bones while simultaneously making real time fluoroscopic recordings, and in two live surgeries during intracochlear electrode insertion. Results Impedance changes were observed with various scalar positions, and values were consistent with those obtained using clinically available software. Using Contour Advance™ electrodes, impedance values increased after stylet removal, particularly when using the monopolar mode. Conclusion Impedance values seem systematically affected by electrode position, with higher values being associated with proximity to the cochlear wall. The new software is capable of acquiring impedance measurements during electrode insertion and this data may be useful to guide surgeons to achieve optimal and atraumatic electrode insertion, to guide robotic electrode insertion, and to provide insights about electrode position in the cochlea.
Objectives Perception of spectrally degraded speech is particularly difficult when the signal is also distorted along the frequency axis. This might be particularly important for post-lingually deafened recipients of cochlear implants (CI), who must adapt to a signal where there may be a mismatch between the frequencies of an input signal and the characteristic frequencies of the neurons stimulated by the CI. However, there is a lack of tools that can be used to identify whether an individual has adapted fully to a mismatch in the frequency-to-place relationship and if so, to find a frequency table that ameliorates any negative effects of an unadapted mismatch. The goal of the proposed investigation is to test the feasibility of whether real-time selection of frequency tables can be used to identify cases in which listeners have not fully adapted to a frequency mismatch. The assumption underlying this approach is that listeners who have not adapted to a frequency mismatch will select a frequency table that minimizes any such mismatches, even at the expense of reducing the information provided by this frequency table. Design 34 normal-hearing adults listened to a noise-vocoded acoustic simulation of a cochlear implant and adjusted the frequency table in real time until they obtained a frequency table that sounded “most intelligible” to them. The use of an acoustic simulation was essential to this study because it allowed us to explicitly control the degree of frequency mismatch present in the simulation. None of the listeners had any previous experience with vocoded speech, in order to test the hypothesis that the real-time selection procedure could be used to identify cases in which a listener has not adapted to a frequency mismatch. After obtaining a self-selected table, we measured CNC word-recognition scores with that self-selected table and two other frequency tables: a “frequency-matched” table that matched the analysis filters with the noisebands of the noise-vocoder simulation, and a “right information” table that is similar to that used in most cochlear implant speech processors, but in this simulation results in a frequency shift equivalent to 6.5 mm of cochlear space. Results Listeners tended to select a table that was very close to, but shifted slightly lower in frequency from the frequency-matched table. The real-time selection process took on average 2–3 minutes for each trial, and the between-trial variability was comparable to that previously observed with closely-related procedures. The word-recognition scores with the self-selected table were clearly higher than with the right-information table and slightly higher than with the frequency-matched table. Conclusions Real-time self-selection of frequency tables may be a viable tool for identifying listeners who have not adapted to a mismatch in the frequency-to-place relationship, and to find a frequency table that is more appropriate for them. Moreover, the small but significant improvements in word-recognition ability observed with the sel...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.