Purpose: To analyze the composition of essential oils of two types of mint as well as compare the antimicrobial, antioxidant and anti-inflammatory activities of the two oils. Methods: Peppermint (M. piperita L.) and chocolate mint (M. piperita L.) oils were obtained by steam distillation in a Clevenger-type apparatus. The chemical composition of the essential oils was determined by gas chromatography-mass spectrometry (GC/MS). The minimal inhibitory concentration (MIC) of the essential oils were determined by broth dilution method. The antioxidant activities of the oils were determined by 2, 2-diphenyl-1-picrylhydrazyl (DPPH)DPPH (0.15, 0.08, 0.92 %v/v, respectively) was stronger than that of chocolate mint (0.23, 0.09, 1.22 %v/v, respectively). In the anti-oxidant test including DPPH and β-Carotenelinoleic acid assays, peppermint oil showed superior antioxidant properties to chocolate mint oil (4.45 -19.86 μl/mL). However, with regard to scavenging NO radical activity, chocolate mint oil exhibited higher activity than peppermint (0.31 and 0.42 μl/mL, respectively). Chocolate mint oil also exhibited higher anti-inflammatory activity than peppermint oil (0.03 and 0.08 μl/mL, respectively). Conclusion:The results obtained should help to clarify the functional applications of these folk herbs and their essential oils for aromatherapeutic healing and other folkloric uses.
This study investigated the polyphenol content, antioxidant activity, and inhibition ability of mushroom tyrosinase and melanogenesis of Dendrobium tosaense (DT) extract. Ground DT was extracted using deionized water (W) or 50% ethanol (50E) at room temperature (RT) or 50 °C (50T) for 20 min. The 50T + 50E extract exhibited the highest total phenol content 47.0 ± 4.0 mg gallic acid equivalent/g DT extract, the highest level of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) free-radical scavenging 66.0 ± 3.0 mg Trolox equivalent/g DT extract, and the highest reducing power 12.00 ± 0.50 mg vitamin C equivalent/g DT extract. The RT + W extract had the highest total flavonoid content 110.0 ± 3.0 mg quercetin equivalent/g DT extract. The RT + 50E extract had the lowest half maximal inhibitory concentration 1.30 ± 0.00 mg/mL for 2,2-diphenyl-1-picrylhydrazyl free-radical scavenging, and the lowest half maximal inhibitory concentration 6.40 ± 0.30 mg/mL for mushroom tyrosinase inhibition activity. DT extracts, especially RT + W and 50T + W, exhibited potent inhibitory effects on melanogenesis of B16/F10 cells. These results demonstrated the application potential of DT extract for skincare.
Coffee is a popular beverage all over the world, but spent coffee grounds (SCGs) constituting almost 75% of original beans are usually considered waste and disposed off. e present study analyzed the functionalities of SCG with a view of its reuse in the cosmetic industry. e SCG extraction was carried out by the hydrothermal method. e resultant extracts were tested for its antioxidant capacity, tyrosinase inhibition, and moisturizing ability. LC-MS/MS results showed two major components in SCG extracts, namely, trigonelline and caffeine. Also, the SCG contained total flavonoid contents of 29 ± 4.5 mg quercetin equivalents (QE)/g SCG and total phenolic contents of 9.44 ± 0.90 mg gallic acid equivalents (GAE)/g SCG. Regarding functionality analysis, SCG extracts exhibited reduction capacity of 8.18 ± 0.39 mg vitamin C equivalent (VCE)/g SCG, DPPH free-radical scavenging activity (IC 50 ) of 3.11 mg SCG/mL, ABTS free-radical scavenging activity (IC 50 ) of 13.61 mg SCG/mL, and tyrosinase inhibition capacity (IC 50 ) of 2.23 mg SCG/mL. Moreover, the volatilization rate of the extract solution (37 mg SCG/mL) reduced by 15.9%. ese results demonstrate the utility of recycling of SCG and illustrate its potential application in the development of skin care products.
Background. Following petroleum, coffee is the second most commonly traded commodity globally. It is also a popular good with economic value, as well as value in terms of leisure and culture. However, coffee processing generates a large amount of waste, resulting in environmental concerns. Therefore, in this study, ethanol was used to extract coffee waste (coffee pulp). High-performance liquid chromatography was conducted to examine the caffeine content and chlorogenic acid content, and the antioxidant capacity (i.e., the total phenolic content, total flavonoid content, DPPH-free radical scavenging capacity, ABTS-free radical scavenging capacity, and reductive capacity) and the tyrosinase inhibition capacity of the coffee pulp extracted using ethanol were comprehensively evaluated. Results. The results showed that the coffee pulp extract obtained using 70% ethanol had the highest tyrosinase inhibition capacity, whereas that obtained using 50% ethanol had the most satisfactory antioxidant capacity (total phenolic content, total flavonoid content, DPPH-free radical scavenging capacity, ABTS-free radical scavenging capacity, and reductive capacity). Conclusion. The results revealed that coffee pulp has superior antioxidant capacity and tyrosinase inhibition capacity when extracted by ethanol. Increasing the economic value of coffee pulp can solve the environmental concerns caused by coffee waste.
Chenopodium formosanum (CF), rich in nutrients and antioxidants, is a native plant in Taiwan. During the harvest, the seeds are collected, while the roots, stems, and leaves remain on the field as agricultural waste. In this study, di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) radical scavenging ability and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging ability experiments of seeds, leaves, stems, and roots were designed using the Taguchi method (TM) under three conditions: Ethanol concentration (0–100%), temperature (25–65 °C), and extraction time (30–150 min). The result demonstrates that seeds and leaves have higher radical scavenging ability than stems and roots. Many studies focused on CF seeds. Therefore, this study selected CF leaves and optimized DPPH, ABTS, total phenol content (TPC), total flavonoid content (TFC), and reducing power (RP) through TM, showing that the predicted value of the leaf is close to the actual value. The optimized results of CF leaves were DPPH 85.22%, ABTS 46.51%, TPC 116.54 µg GAE/mL, TFC 143.46 µg QE/mL, and RP 23.29 µg VCE (vitamin C equivalent)/mL. The DPPH and ABTS of CF leaves were second only to the results of CF seeds. It can be seen that CF leaves have the potential as a source of antioxidants and help in waste reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.