The projected responses of forest ecosystems to warming and drying associated with twenty-first-century climate change vary widely from resiliency to widespread tree mortality 1-3 . Current vegetation models lack the ability to account for mortality of overstorey trees during extreme drought owing to uncertainties in mechanisms and thresholds causing mortality 4,5 . Here we assess the causes of tree mortality, using field measurements of branch hydraulic conductivity during ongoing mortality in Populus tremuloides in the southwestern United States and a detailed plant hydraulics model. We identify a lethal plant water stress threshold that corresponds with a loss of vascular transport capacity from air entry into the xylem. We then use this hydraulic-based threshold to simulate forest dieback during historical drought, and compare predictions against three independent mortality data sets. The hydraulic threshold predicted with 75% accuracy regional patterns of tree mortality as found in field plots and mortality maps derived from Landsat imagery. In a high-emissions scenario, climate models project that drought stress will exceed the observed mortality threshold in the southwestern United States by the 2050s. Our approach provides a powerful and tractable way of incorporating tree mortality into vegetation models to resolve uncertainty over the fate of forest ecosystems in a changing climate.Forests play a central role in global water, energy and biogeochemical cycles and provide substantial ecosystem services to societies around the globe 6 . Yet the fate of forest ecosystems in a changing climate is highly uncertain. Rising atmospheric CO 2 concentrations may benefit trees, particularly through increasing water-use efficiency 7 , but concomitant increases in temperature and drought stress could potentially overwhelm these benefits, leading to widespread forest dieback in many ecosystems globally 8 . Although precipitation projections under climate scenarios are more variable and uncertain, general circulation models project consistent increases in air temperature and thus evaporation over much of the world and resulting decreases in soil moisture in many regions, leading to more intense and frequent droughts 9 . Recent studies have indicated resilience in forest biomes in response to early twenty-first-century droughts through inter-annual modulations in water-use efficiency 10 and long-term increases in forest water-use efficiency 7 . In contrast, severe regional droughts have strongly decreased the carbon sink of key forest ecosystems [11][12][13] and widespread, climate-induced tree mortality has been observed around the globe 8,14 .
[1] Changes in the magnitude and direction of ecosystem carbon (C) balance accompanying woody plant encroachment are among the largest contributors to the uncertainty in the North American C budget. In this synthesis we identify the important species contributing to woody encroachment, summarize our current knowledge of aboveground and belowground C storage change with woody encroachment, and evaluate the range of human and natural disturbance factors that alter the course of C gains and losses within ecosystems experiencing woody encroachment. Available data indicate that relative to the historic vegetation, aboveground net primary production (ANPP) decreases with woody plant encroachment in arid regions (mean annual precipitation (MAP) < 336 mm), but increases in semiarid and subhumid regions (on the order of 0.7 g C m −2 yr −1 per mm of MAP over 336 mm). Soil organic carbon response to woody plant encroachment ranged from losses of 6200 g C m −2 to gains of 2700 g C m −2 with an average accumulation of 385 g C m −2 across all studies and did not appear to be closely coupled to ANPP. Taken together, in the absence of disturbance, woody encroachment appears to result in a net ecosystem C gain across most species and ecoregions. However, disturbance associated with wildfire, land management practices, and drought may quickly and significantly offset these gains and should be explicitly factored into regional-scale C balance estimates. Our findings may be used to better constrain future estimates of woody plant encroachment influences on the North American C budget.
The climatic variability hypothesis posits that the magnitude of climatic variability increases with latitude, elevation, or both, and that greater variability selects for organisms with broader temperature tolerances, enabling them to be geographically widespread. We tested this classical hypothesis for the elevational range sizes of more than 16,500 terrestrial vertebrates on 180 montane gradients. In support of the hypothesis, mean elevational range size was positively correlated with the scope of seasonal temperature variation, whereas elevational range size was negatively correlated with daily temperature variation among gradients. In accordance with a previous life history model and our extended versions of it, our findings indicate that physiological specialization may be favored under shorter-term climatic variability.
Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.