BackgroundNetwork is a useful way for presenting many types of biological data including protein-protein interactions, gene regulations, cellular pathways, and signal transductions. We can measure nodes by their network features to infer their importance in the network, and it can help us identify central elements of biological networks.ResultsWe introduce a novel Cytoscape plugin cytoHubba for ranking nodes in a network by their network features. CytoHubba provides 11 topological analysis methods including Degree, Edge Percolated Component, Maximum Neighborhood Component, Density of Maximum Neighborhood Component, Maximal Clique Centrality and six centralities (Bottleneck, EcCentricity, Closeness, Radiality, Betweenness, and Stress) based on shortest paths. Among the eleven methods, the new proposed method, MCC, has a better performance on the precision of predicting essential proteins from the yeast PPI network.ConclusionsCytoHubba provide a user-friendly interface to explore important nodes in biological networks. It computes all eleven methods in one stop shopping way. Besides, researchers are able to combine cytoHubba with and other plugins into a novel analysis scheme. The network and sub-networks caught by this topological analysis strategy will lead to new insights on essential regulatory networks and protein drug targets for experimental biologists. According to cytoscape plugin download statistics, the accumulated number of cytoHubba is around 6,700 times since 2010.
One major task in the post-genome era is to reconstruct proteomic and genomic interacting networks using high-throughput experiment data. To identify essential nodes/hubs in these interactomes is a way to decipher the critical keys inside biochemical pathways or complex networks. These essential nodes/hubs may serve as potential drug-targets for developing novel therapy of human diseases, such as cancer or infectious disease caused by emerging pathogens. Hub Objects Analyzer (Hubba) is a web-based service for exploring important nodes in an interactome network generated from specific small- or large-scale experimental methods based on graph theory. Two characteristic analysis algorithms, Maximum Neighborhood Component (MNC) and Density of Maximum Neighborhood Component (DMNC) are developed for exploring and identifying hubs/essential nodes from interactome networks. Users can submit their own interaction data in PSI format (Proteomics Standards Initiative, version 2.5 and 1.0), tab format and tab with weight values. User will get an email notification of the calculation complete in minutes or hours, depending on the size of submitted dataset. Hubba result includes a rank given by a composite index, a manifest graph of network to show the relationship amid these hubs, and links for retrieving output files. This proposed method (DMNC || MNC) can be applied to discover some unrecognized hubs from previous dataset. For example, most of the Hubba high-ranked hubs (80% in top 10 hub list, and >70% in top 40 hub list) from the yeast protein interactome data (Y2H experiment) are reported as essential proteins. Since the analysis methods of Hubba are based on topology, it can also be used on other kinds of networks to explore the essential nodes, like networks in yeast, rat, mouse and human. The website of Hubba is freely available at http://hub.iis.sinica.edu.tw/Hubba.
BackgroundMany research results show that the biological systems are composed of functional modules. Members in the same module usually have common functions. This is useful information to understand how biological systems work. Therefore, detecting functional modules is an important research topic in the post-genome era. One of functional module detecting methods is to find dense regions in Protein-Protein Interaction (PPI) networks. Most of current methods neglect confidence-scores of interactions, and pay little attention on using gene expression data to improve their results.ResultsIn this paper, we propose a novel hub-attachment based method to detect functional modules from confidence-scored protein interactions and expression profiles, and we name it HUNTER. Our method not only can extract functional modules from a weighted PPI network, but also use gene expression data as optional input to increase the quality of outcomes. Using HUNTER on yeast data, we found it can discover more novel components related with RNA polymerase complex than those existed methods from yeast interactome. And these new components show the close relationship with polymerase after functional analysis on Gene Ontology.ConclusionA C++ implementation of our prediction method, dataset and supplementary material are available at http://hub.iis.sinica.edu.tw/Hunter/. Our proposed HUNTER method has been applied on yeast data, and the empirical results show that our method can accurately identify functional modules. Such useful application derived from our algorithm can reconstruct the biological machinery, identify undiscovered components and decipher common sub-modules inside these complexes like RNA polymerases I, II, III.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.