HBcAg (hepatitis B core antigen) is a nanoplex bioproduct that has a great potential in the development of therapeutic drugs and vaccines. In the present study, a continuous-flow bead milling for the disruption of Escherichia coli was optimized and a direct recovery protocol to isolate the recombinant HBcAg from the unclarified E. coli disruptate was developed. The optimal condition for continuous-flow bead milling for the release of HBcAg from E. coli was achieved at a feed flow rate of 15 litres/h, biomass concentration of 10% [ww/v (wet weight/vol.)] and impeller tip speed of 14 m/s. The sucrose-density-gradient analysis showed that the particulate form of the HBcAg released by this optimal condition is still preserved. In the direct purification of HBcAg from the unclarified disruptate, the AE-EBAC (anion-exchange expanded-bed adsorption chromatography) technique was employed. A 54% adsorption and 50.7% recovery of HBcAg were achieved in this direct recovery process. The purity of HBcAg recovered was 49.8%, which corresponds to a purification factor of 2.0. ELISA showed that the HBcAg recovered is functionally active.
The performance of a batch model bead mill on the release of hepatitis B core antigen (HBcAg) from Escherichia coli was investigated in this study. The operating parameters examined were impeller tip speed (8-14 m/s), biomass concentration [5-20% (w/v)] and bead loading [65-80% (v/v)]. The highest yield (24.3 mg/g cell) and rate constant (0.471 l/min) of HBcAg release were achieved at impeller tip speed of 14 m/s. However, the high-shear stress under these operating conditions caused damage of the HBcAg. The highest yield (22.7 mg/g cell) and rate constant (0.344 l/ min) of HBcAg release were observed at biomass concentration of 20% (w/v). There was no significant effect of bead loading on the performance of bead milling being observed. In conclusion, the optimal operating condition for the release of HBcAg was at bead loading of 75% (v/v), biomass concentration of 20% (w/v) and impeller tip speed of 10 m/s.
Hepatitis B core antigen (HBcAg) is an important serological marker used in the diagnosis of hepatitis B virus (HBV) infections. In the current study, a fast and efficient preparative purification protocol for truncated HBcAg from Escherichia coli disruptate was developed. The recombinant HBcAg was first captured by anion exchange expanded bed adsorption chromatography integrated with a cell disruption process. This online capture process has shortened the process time and eliminated the "hold-up" period that may be detrimental to the quality of target protein. The eluted product from the expanded bed adsorption chromatography was subsequently purified using size-exclusion chromatography. The results showed that this novel purification protocol achieved a recovery yield of 45.1% with a product purity of 88.2%, which corresponds to a purification factor of 4.5. The recovered HBcAg is still biologically active as shown by ELISA test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.