Various cellular stresses including oxidative stress induce a collapse of the Ran gradient, which causes accumulation of importin a in the nucleus and a subsequent block of nuclear protein import. However, it is unknown whether accumulated importin a performs roles in the nucleus after its migration in response to stress. In this study, we found that nuclear-retained importin a2 binds with DNase I-sensitive nuclear component(s) and exhibits selective upregulation of mRNA encoding Serine/threonine kinase 35 (STK35) by microarray analysis. Chromatin immunoprecipitation and promoter analysis demonstrated that importin a2 can access to the promoter region of STK35 and accelerate its transcription in response to hydrogen peroxide exposure. Furthermore, constitutive overexpression of STK35 proteins enhances caspase-independent cell death under oxidative stress conditions. These results collectively reveal that nuclear-localized importin a2 influences gene expression and contributes directly to cell fate outcomes including non-apoptotic cell death.
Nucleocytoplasmic transport mediated by importin proteins is central to many developmental processes, such as precisely regulated germ cell differentiation during spermatogenesis. Here we examine for the first time the dynamic association of importins with cargo during two successive spermatogenic stages: meiotic pachytene spermatocytes and haploid round spermatids of the adult rat testis. Immunoprecipitation followed by mass spectrometry yielded the first non-biased identification of proteins selectively interacting with importin α2, α3 and α4 in each of these cell types. Amongst the 22 novel importin binding proteins identified, 11 contain a predicted classical nuclear localization signal (cNLS) for importin α binding using a new algorithm (Kosugi et al. [22]), although only 6 of these have known nuclear functions. An importin α2-immunoprecipitated protein with a key nuclear role in meiosis, structural maintenance of chromosomes 6 (SMC6), contained a predicted bipartite NLS that was shown to be preferentially recognized by importin α together with importin β1. In contrast, the predicted cNLS of synovial sarcoma, X breakpoint 2 interacting protein (SSX2IP) was found not to confer either nuclear accumulation or direct binding to importin αs, implying that NLS prediction algorithms may identify cryptic importin binding sites or require additional refinement to increase their accuracy. Unbiased identification of importin α binding proteins in cellular differentiation represents a powerful tool to help identify the functional roles of importin αs.
The establishment and maturation of the testicular Sertoli cell population underpins adult male fertility. These events are influenced by hormones and endocrine factors, including FSH, testosterone and activin. Activin A has developmentally regulated effects on Sertoli cells, enhancing proliferation of immature cells and later promoting postmitotic maturation. These differential responses correlate with altered mothers against decapentaplegic (SMAD)-2/3 signaling: immature cells signal via SMAD3, whereas postmitotic cells use both SMAD2 and SMAD3. This study examined the contribution of SMAD3 to postnatal mouse testis development. We show that SMAD3 production and subcellular localization are highly regulated and, through histological and molecular analyses, identify effects of altered Smad3 dosage on Sertoli and germ cell development. Smad3and Smad3 Ϫ/Ϫ mice had smaller testes at 7 d postpartum, but this was not sustained into adulthood.Juvenile and adult serum FSH levels were unaffected by genotype. Smad3-null mice displayed delayed Sertoli cell maturation and had reduced expression of androgen receptor (AR), androgenregulated transcripts, and Smad2, whereas germ cell and Leydig cell development were essentially normal. This contrasted remarkably with advanced Sertoli and germ cell maturation and increased expression of AR and androgen-regulated transcripts in Smad3 ϩ/Ϫ mice. In addition, SMAD3 was downregulated during testis development and testosterone up-regulated Smad2, but not Smad3, in the TM4 Sertoli cell line. Collectively these data reveal that appropriate SMAD3-mediated signaling drives normal Sertoli cell proliferation, androgen responsiveness, and maturation and influences the pace of the first wave of spermatogenesis, providing new clues to causes of altered pubertal development in boys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.