Drug-induced liver injury, although infrequent, is an important safety concern that can lead to fatality in patients and failure in drug developments. In this study, we have used an ensemble of mixed learning algorithms and mixed features for the development of a model to predict hepatic effects. This robust method is based on the premise that no single learning algorithm is optimum for all modelling problems. An ensemble model of 617 base classifiers was built from a diverse set of 1,087 compounds. The ensemble model was validated internally with five-fold cross-validation and 25 rounds of y-randomization. In the external validation of 120 compounds, the ensemble model had achieved an accuracy of 75.0%, sensitivity of 81.9% and specificity of 64.6%. The model was also able to identify 22 of 23 withdrawn drugs or drugs with black box warning against hepatotoxicity. Dronedarone which is associated with severe liver injuries, announced in a recent FDA drug safety communication, was predicted as hepatotoxic by the ensemble model. It was found that the ensemble model was capable of classifying positive compounds (with hepatic effects) well, but less so on negatives compounds when they were structurally similar. The ensemble model built in this study is made available for public use.
Lymphocyte-specific protein tyrosine kinase (Lck) inhibitors have treatment potential for autoimmune diseases and transplant rejection. A support vector machine (SVM) model trained with 820 positive compounds (Lck inhibitors) and 70 negative compounds (Lck noninhibitors) combined with 65 142 generated putative negatives was developed for predicting compounds with a Lck inhibitory activity of IC(50) < or = 10 microM. The SVM model, with an estimated sensitivity of greater than 83% and specificity of greater than 99%, was used to screen 168 014 compounds in the MDDR and was found to have a yield of 45.8% and a false positive rate of 0.52%. The model was also able to identify novel Lck inhibitors and distinguish inhibitors from structurally similar noninhibitors at a false positive rate of 0.27%. To the best of our knowledge, the SVM model developed in this work is the first model with a broad applicability domain and low false positive rate, which makes it very suitable for the virtual screening of chemical libraries for Lck inhibitors.
In this study, the ensemble of features and training samples was examined with a collection of support vector machines. The effects of data sampling methods, ratio of positive to negative compounds, and types of base models combiner to produce ensemble models were explored. The ensemble method was applied to produce four separate in silico models to classify the labels for eye/skin corrosion (H314), skin irritation (H315), serious eye damage (H318), and eye irritation (H319), which are defined in the "Globally Harmonized System of Classification and Labelling of Chemicals". To the best of our knowledge, the training set used in this work is one of the largest (made of publicly available data) with acceptable prediction performances. These models were distributed via PaDEL-DDPredictor (http://padel.nus.edu.sg/software/padelddpredictor) that can be downloaded freely for public use.
ADMET (absorption, distribution, metabolism, excretion, and toxicity)-related failure of drug candidates is a major issue for the pharmaceutical industry today. Prediction of PD-PK-T properties using in silico tools has become very important in pharmaceutical research to reduce cost and enhance efficiency. PaDEL-DDPredictor is an in silico tool for rapid prediction of PD-PK-T properties of compounds from their chemical structures. It is free and open-source software that, has both graphical user interface and command line interface, can work on all major platforms (Windows, Linux, and MacOS) and supports more than 90 different molecular file formats. The software can be downloaded from http://padel.nus.edu.sg/software/padelddpredictor.
Phosphoinositide 3-kinases (PI3Ks) inhibitors have treatment potential for cancer, diabetes, cardiovascular disease, chronic inflammation and asthma. A consensus model consisting of three base classifiers (AODE, kNN, and SVM) trained with 1,283 positive compounds (PI3K inhibitors), 16 negative compounds (PI3K non-inhibitors) and 64,078 generated putative negatives was developed for predicting compounds with PI3K inhibitory activity of IC(50) < or = 10 microM. The consensus model has an estimated false positive rate of 0.75%. Nine novel potential inhibitors were identified using the consensus model and several of these contain structural features that are consistent with those found to be important for PI3K inhibitory activities. An advantage of the current model is that it does not require knowledge of 3D structural information of the various PI3K isoforms, which is not readily available for all isoforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.