The aim of this study was to elucidate how flooding of the Changjiang River affects the assemblage composition of phycoerythrin-rich (PE-rich) Synechococcus at the surface of the East China Sea (ECS). During non-flooding summers (e.g., 2009), PE-rich Synechococcus usually thrive at the outer edge of the Changjiang River diluted water coverage (CDW; salinity ≤31 PSU). In the summer of 2010, a severe flood occurred in the Changjiang River basin. The plentiful freshwater injection resulted in the expansion of the CDW over half of the ECS and caused PE-rich cells to show a uniform distribution pattern, with decreased abundance compared with the non-flooding summer. The phylogenetic diversity of 16S rRNA gene sequences indicated that the flooding event also shifted the picoplankton community composition from being dominated by Synechococcus, mainly attributed to the clade II lineage, to various orders of heterotrophic bacteria, including Actinobacteria, Flavobacteria, α-Proteobacteria, and γ-Proteobacteria. As an increasing number of studies have proposed that global warming might result in more frequent floods, combining this perspective with the information obtained from our previous [1] and this studies yield a more comprehensive understanding of the relationship between the composition of the marine Synechococcus assemblage and global environmental changes.
Synechococcus spp. have been suggested as the primary component of picophytoplankton in the East China Sea (ECS). However, the influences of sudden environmental changes on Synechococcus assemblage composition have not yet been investigated. In the summer of 2010, a disastrous flood occurred in the Changjiang River basin. To improve our understanding of how this flood affected the Synechococcus ecology on the ECS surface, their assemblages and distributions have been described using two-laser flow cytometry and phylogenetic analysis of the phycocyanin operon. During the nonflooding summer of 2009, phycoerythrin-rich (PE-rich) Synechococcus thrived near the outer boundary of the Changjiang River diluted water (CDW) coverage, while phycocyanin-rich (PC-rich) Synechococcus predominated inside the turbid CDW with a transparency of <80%. During the 2010 summer, flooding expanded the CDW coverage area to over half of the ECS. PE-rich cells showed a homogeneous distribution and a decline in abundance, while the spatial pattern of the PC-rich Synechococcus resembled the pattern from 2009. Based on the phycocyanin operon phylogeny, the Synechococcus in the ECS were categorized into five groups, ECS-1 to ECS-4 and ECS-PE, comprising a total of 19 operational taxonomic units. In the summer of 2009, ECS-2 dominated in the coast, and the ECS-3 and ECS-PE clades prevailed in the offshore waters. However, during the summer of 2010, ECS-4 and ECS-PE became the dominant strains. The injection of abundant anthropogenic pollutants and the enhancement of transparency within the CDW expansion area appear to be the factors needed to transiently alter the ecology of Synechococcus after flooding.
Photosynthetic picoeukaryotes (PPEs) are important constituents in picoplankton communities in many marine ecosystems. However, little is known about their community composition in the subtropical coastal waters of the Northwestern Pacific Ocean. In order to study their taxonomic composition, this study constructed 18S rRNA gene libraries using flow cytometric sorting during the warm season. The results show that, after diatoms, prasinophyte clones are numerically dominant. Within prasinophytes, Micromonas produced the most common sequences, and included clades II, III, IV, and VI. We are establishing the new Micromonas clade VI based on our phylogenetic analysis. Sequences of this clade have previously been retrieved from the South China Sea and Red Sea, indicating a worldwide distribution, but this is the first study to detect clade VI in the coastal waters of Taiwan. The TSA-FISH results indicated that Micromonas clade VI peaked in the summer (~4 × 10 cells/ml), accounting for one-fifth of Micromonas abundance on average. Overall, Micromonas contributed half of Mamiellophyceae abundance, while Mamiellophyceae contributed 40% of PPE abundance. This study demonstrates the importance of Micromonas within the Mamiellophyceae in a subtropical coastal ecosystem.
We investigated whether phycoerythrin (PE), a pigment sourced from marine algae, could act as an immunomodulatory agent in whiteleg shrimp (Litopenaeus vannamei). To this end, PE was extracted and purified from a PE-rich macroalgae, Colaconema sp. Our in vitro analysis demonstrated that PE enhanced prophenoloxidase and phagocytosis activity but inhibited the production of reactive oxygen species in hemocytes. Additionally, the PE signal could be detected using an in vivo imaging system after its injection into the ventral sinus of the cephalothorax of whiteleg shrimp. The expression profiles of fourteen immune-related genes were monitored in hemocytes from whiteleg shrimp injected with 0.30 μg of PE per gram of body weight, and crustin, lysozyme, penaiedin 4, and anti-lipopolysaccharide factor showed up-regulated post-stimulation. The induction of immune genes and enhancement of innate immune parameters by PE may explain the higher survival rates for shrimp that received different doses of PE prior to being challenged with Vibrio parahaemolyticus or white spot syndrome virus compared to controls. Combined, these results show that PE from Colaconema sp. can differentially stimulate the immune response of whiteleg shrimp in vitro and in vivo and could potentially be used as an immunomodulator in shrimp culture.
Ultraviolet (UV-C) irradiation is the most important part of water filtration, which has no side effects on the environment and has been used in water purification systems in the aquaculture and transistor industries. In this research, the effect of UV-C on Chlorella sp. was investigated. Chlorella sp. was irradiated 0, 1, 2 or 3 times at a fixed flow rate of 6.5 L min-1 and the effects of UV-C LED on the apoptosis rate and death rate of Chlorella sp. were analyzed by flow cytometry after staining cells with the nucleic acid dye SYTOX Green and the membrane-associated protein stain Annexin V-PE Reagent. As a result of UV-C irradiation, the Chlorella sp. cells underwent phosphatidylserine (PS) ectropion and plasma membrane damage, which resulted in death. The effect of UV-C was proportional to the number of times of irradiation. Three doses of UV-C LED irradiation resulted in a 91.76 ± 3.33% death rate, as observed through SYTOX Green staining, with no rebound within 72 h. This research is the first report to observe that delayed cellular apoptosis occurred in Chlorella sp., and we expect that our study can be used as a standard reference for future industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.