Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for development of reproductive tissues, as well as nonreproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans.
Members of the nuclear receptor superfamily of ligand-dependent transcription factors carry out vital cellular functions and are highly druggable therapeutic targets. Liver X receptors (LXRs) are nuclear receptor family members that function in cholesterol transport, glucose metabolism and the modulation of inflammatory responses. There is now accumulating evidence to support the involvement of LXRs in a variety of malignancies and the potential efficacy of their ligands in these diseases. This Review summarizes the discovery and characterization of LXRs and their ligands, their effects and mechanisms in preclinical cancer models, and the future directions of basic and translational LXR research in cancer therapeutics.
Estrogen receptor α (ERα) is initially expressed in the majority of breast cancers and promotes estrogen-dependent cancer progression by regulating the transcription of genes linked to cell proliferation. ERα status is of clinical importance, as ERα-positive breast cancers can be successfully treated by adjuvant therapy with antiestrogens or aromatase inhibitors. Complications arise from the frequent development of drug resistance that might be caused by multiple alterations, including components of ERα signaling, during tumor progression and metastasis. Therefore, insights into the molecular mechanisms that control ERα expression and stability are of utmost importance to improve breast cancer diagnostics and therapeutics. Here we report that the atypical E3 ubiquitin ligase RNF31 stabilizes ERα and facilitates ERα-stimulated proliferation in breast cancer cell lines. We show that depletion of RNF31 decreases the number of cells in the S phase and reduces the levels of ERα and its downstream target genes, including cyclin D1 and c-myc. Analysis of data from clinical samples confirms correlation between RNF31 expression and the expression of ERα target genes. Immunoprecipitation indicates that RNF31 associates with ERα and increases its stability and mono-ubiquitination, dependent on the ubiquitin ligase activity of RNF31. Our data suggest that association of RNF31 and ERα occurs mainly in the cytosol, consistent with the lack of RNF31 recruitment to ERα-occupied promoters. In conclusion, our study establishes a non-genomic mechanism by which RNF31 via stabilizing ERα levels controls the transcription of estrogen-dependent genes linked to breast cancer cell proliferation.
Summary Human breast cancers that exhibit high proportions of immune cells and elevated levels of proinflammatory cytokines predict poor prognosis. Here, we demonstrate that treatment of human MCF-7 breast cancer cells with pro-inflammatory cytokines results in ERα-dependent activation of gene expression and proliferation, in the absence of ligand or presence of 4OH-tamoxifen (TOT). Cytokine activation of ERα and endocrine resistance is dependent on phosphorylation of ERα at S305 in the hinge domain. Phosphorylation of S305 by IKKβ establishes an ERα cistrome that substantially overlaps with the estradiol (E2)-dependent ERα cistrome. Structural analyses suggest that S305-P forms a charge-linked bridge with the C-terminal F domain of ERα that enables inter-domain communication and constitutive activity from the N-terminal coactivator-binding site, revealing the structural basis of endocrine resistance. ERα therefore functions as a transcriptional effector of cytokine-induced IKKβ signaling, suggesting a mechanism through which the tumor microenvironment controls tumor progression and endocrine resistance.
Fms-like tyrosine kinase-3 ligand (Flt3L) is a hemopoietic cytokine that stimulates the production of dendritic cells. This study evaluated the ability of Flt3L-enhanced dendritic cell production to increase the resistance of mice to a burn wound infection with Pseudomonas aeruginosa, a common source of infections in burn patients that have impaired immunity and are susceptible to opportunistic microorganisms. Treatment of mice with Flt3L for 5 days caused a significant increase in dendritic cell numbers in the spleen and significantly increased survival upon a subsequent burn wound infection. Improved survival in Flt3L-treated mice was associated with limited bacterial growth and spread within the burn wounds and a decrease in systemic dissemination of P. aeruginosa. Resistance to burn wound infection could also be conferred to recipient mice by the adoptive transfer of dendritic cells that had been isolated from spleens of Flt3L-treated mice. Adoptive transfer of the same number of splenic dendritic cells from nontreated mice did not confer resistance to burn wound infection. These data indicate that Flt3L can increase the resistance of mice to a P. aeruginosa burn wound infection through both stimulation of dendritic cell production and enhancement of dendritic cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.