Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor α (ERα) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERα binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5′ and 3′ ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERα binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERα-positive from ERα-negative breast tumors. The expression dynamics of the genes adjacent to ERα binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERα appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERα target genes. Unexpectedly, we found that only 22%–24% of the bona fide human ERα binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERα binding and gene regulation.
Severe acute respiratory syndrome (SARS) is an infectious disease caused by a newly identified human coronavirus (SARS-CoV). Currently, no effective drug exists to treat SARS-CoV infection. In this study, we investigated whether a panel of commercially available antiviral drugs exhibit in vitro anti–SARS-CoV activity. A drug-screening assay that scores for virus-induced cytopathic effects on cultured cells was used. Tested were 19 clinically approved compounds from several major antiviral pharmacologic classes: nucleoside analogs, interferons, protease inhibitors, reverse transcriptase inhibitors, and neuraminidase inhibitors. Complete inhibition of cytopathic effects of SARS-CoV in culture was observed for interferon subtypes, β-1b, α-n1, α-n3, and human leukocyte interferon α. These findings support clinical testing of approved interferons for the treatment of SARS.
Targeting LXRs is a promising strategy for cancer treatment, particularly for those cancers which do not have effective treatment options. Key questions remain, however, regarding the specific mechanisms of action, effects on other target cells within the tumor microenvironment, and receptor status in patient populations. Moreover, LXR ligands optimized for disease-specific functions and cancer-related endpoints are currently not available. These issues represent both challenges and significant opportunities for future research and development efforts.
Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor a (ERa) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERa binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (.5 kb from 59 and 39 ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERa binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERa-positive from ERa-negative breast tumors. The expression dynamics of the genes adjacent to ERa binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERa appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERa target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERa binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERa binding and gene regulation.
The estrogens are female sex hormones that are involved in a variety of physiological processes, including reproductive development and function, wound healing, and bone growth. They are mainly known for their roles in reproductive tissues-specifically, 17-estradiol (E 2 ), the primary estrogen, which is secreted by the ovaries and induces cellular proliferation and growth of the uterus and mammary glands. In addition to the role of estrogens in promoting tissue growth and development during normal physiological states, they have a well-established role in determining susceptibility to disease, particularly cancer, in reproductive tissues. The responsiveness of various tissues to estrogen is genetically controlled, with marked quantitative variation observed across multiple species, including humans. This variation presents both researchers and clinicians with a veritable physiological puzzle, the pieces of which-many of them unknown-are complex and difficult to fit together. Although genetics is known to play a major role in determining sensitivity to estrogens, there are other factors, including parent of origin and the maternal environment, that are intimately linked to heritable phenotypes but do not represent genotype, per se. The objectives of this review article were to summarize the current knowledge of the role of genotype, and uterine and neonatal environments, in phenotypic variation in the response to estrogens; to discuss recent findings and the potential mechanisms involved; and to highlight exciting research opportunities for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.