BackgroundCancer stem cells (CSCs) play an important role in tumor initiation, progression, and metastasis and are responsible for high therapeutic failure rates. Identification and characterization of CSC are crucial for facilitating the monitoring, therapy, or prevention of cancer. Great efforts have been paid to develop a more effective methodology. Nevertheless, the ideal model for CSC research is still evolving. In this study, we created a nonadhesive culture system to enrich CSCs from human oral squamous cell carcinoma cell lines with sphere formation and to characterize their CSC properties further.MethodsA nonadhesive culture system was designed to generate spheres from the SAS and OECM-1 cell lines. A subsequent investigation of their CSC properties, including stemness, self-renewal, and chemo- and radioresistance in vitro, as well as tumor initiation capacity in vivo, was also performed.ResultsSpheres were formed cost-effectively and time-efficiently within 5 to 7 days. Moreover, we proved that these spheres expressed putative stem cell markers and exhibited chemoradiotherapeutic resistance, in addition to tumor-initiating and self-renewal capabilities.ConclusionsUsing this nonadhesive culture system, we successfully established a rapid and cost-effective model that exhibits the characteristics of CSCs and can be used in cancer research.
BackgroundTreatment failure in oral squamous cell carcinoma (OSCC) leading to local recurrence(s) and metastases is mainly due to drug resistance. Cancer stem cells (CSCs) are thought be responsible for the development of drug resistance. However, the correlations between CSCs, drug resistance, and new strategy against drug resistance in OSCC remain elusive.MethodsA drug-resistant sphere (DRSP) model was generated by using a nonadhesive culture system to induce drug-resistant cells from SCC25 oral cancer cells. A comparative analysis was performed between the parent control cells and DRSPs with a related treatment strategy focusing on the expression of epithelial–mesenchymal transition (EMT)-associated markers, drug-resistance-related genes, and CSC properties in vitro, as well as tumorigenicity and the regimen for tumor regression in vivo.ResultsOur data show the presence of a phenomenon of EMT with gradual cellular transition from an epithelioid to mesenchymal-like spheroid morphology during induction of drug resistance. The characterization of DRSPs revealed the upregulation of the drug-resistance-related genes ABCG2 and MDR-1 and of CSC-representative markers, suggesting that DRSPs have greater resistance to cisplatin (Cis) and stronger CSC properties compared with the control. Moreover, overexpression of phosphorylated heat-shock protein 27 (p-Hsp27) via the activation of p38 MAPK signaling was observed in DRSPs. Knockdown of Hsp27 decreased Cis resistance and induced apoptosis in DRSPs. Furthermore, an inhibitor of Hsp27, quercetin (Qu), suppressed p-Hsp27 expression, with alterations of the EMT signature, leading to the promotion of apoptosis in DRSPs. A xenographic study also confirmed the increase of tumorigenicity in DRSPs. The combination of Qu and Cis can reduce tumor growth and decrease drug resistance in OSCC.ConclusionsThe p38 MAPK–Hsp27 axis plays an important role in CSCs-mediated drug resistance in OSCC. Targeting this axis using Qu combined with Cis may be a treatment strategy to improve prognosis in patients with OSCC.
Treatment failure followed by relapse and metastasis in patients with non-small cell lung cancer is often the result of acquired resistance to cisplatin-based chemotherapy. A cancer stem cell (CSC)-mediated anti-apoptotic phenomenon is responsible for the development of drug resistance. The underlying molecular mechanism related to cisplatin resistance is still controversial, and a new strategy is needed to counteract cisplatin resistance. We used a nonadhesive culture system to generate drug-resistant spheres (DRSPs) derived from cisplatin-resistant H23 lung cancer cells. The expressions of drug-resistance genes, properties of CSCs, and markers of anti-apoptotic proteins were compared between control cells and DRSPs. DRSPs exhibited upregulation of cisplatin resistance-related genes. Gradual morphological alterations showing epithelial-to-mesenchymal transition phenomenon and increased invasion and migration abilities were seen during induction of DRSPs. Compared with control cells, DRSPs displayed increased CSC and anti-apoptotic properties, greater resistance to cisplatin, and overexpression of p-Hsp27 via activation of p38 MAPK signaling. Knockdown of Hsp27 or p38 decreased cisplatin resistance and increased apoptosis in DRSPs. Clinical studies confirmed that the expression of p-Hsp27 was closely associated with prognosis. Overexpression of p-Hsp27 was usually detected in advanced-stage patients with lung cancer and indicated short survival.SummaryDRSPs were useful for investigating drug resistance and may provide a practical model for studying the crucial role of p-Hsp27 in the p38 MAPK–Hsp27 axis in CSC-mediated cisplatin resistance. Targeting this axis using siRNA Hsp27 may provide a treatment strategy to improve prognosis and prolong survival in lung cancer patients.
The current study confirmed that long-term NNK exposure plays a role in HNSCC by increasing anti-apoptosis and therapeutic resistance via the Snail-RKIP signaling pathway. Our data also suggest that α7 nicotinic acetylcholine receptor (α7-nAChR) inhibition or targeting Snail may provide a feasible rationale for preventing the progression of HNSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.