Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body’s HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action.
Hyaluronan (HA) has been increasingly used as a dietary supplement to improve the skin. However, the effect of ingested HA may depend on its molecular weight (MW) because its physiological activities in the body vary with its MW. In this study, we examined the effects of ingested HA with varying MW on the skin. In this randomized, double blind, placebo controlled study, 61 subjects with dry skin received oral HA (120 mg/day), of MWs 800 k and 300 k or placebo, for 6 weeks. The skin moisture contents of the first two groups increased more than those of the placebo group during the ingestion period. In addition, group HA 300 k exhibited significant improvements in skin moisture content 2 weeks after ingestion ended compared with the placebo group. A questionnaire survey about subjective facial aging symptoms showed that the HA treated groups exhibited significantly improved the skin condition compared with the placebo treated group. Furthermore, dermatologists objectively evaluated the clinical symptoms of the facial and whole body skin, showing that no adverse events were related to daily ingestion of HA. This study shows that both of ingesting HAs (MWs 800 k and 300 k) improved the skin condition by increasing the moisture content.
Dietary glucosylceramide increased the expression of claudin-1 in UVB-irradiated mouse epidermis. Sphingosine and phytosphingosine, metabolites of glucosylceramide, increased trans-epithelial electrical resistance, and phytosphingosine increased claudin-1 mRNA expression in cultured keratinocytes. Our results indicate that the skin barrier improvement induced by dietary glucosylceramide might be due to enhancement of tight junction function, mediated by increased expression of claudin-1 induced by sphingoid metabolites.
We examined the effect of the daily ingestion of herb extract from Eucommia ulmoides leaves and Korean ginseng on skin damage induced by repeated UV irradiation of hairless mice. The herb extract was orally administered to mice at a dose of 1000 mg/kg/day. The hydration of mice dorsal skin decreased significantly with repeated UV irradiation, but did not decrease when the herb extract was administered for seven weeks. Transepidermal water loss (TEWL) increased with UV irradiation, but decreased with the administration of dietary herb extract. These effects were more pronounced when combined with the administration of collagen hydrolysate. Geniposidic acid from E. ulmoides leaves and ginsenoside Rg1 from Korean ginseng reduced TEWL and increased the skin moisture content of UV-damaged skin on hairless mice, respectively. We concluded that this dietary herb extract reduced the skin damage caused by UV-induced aging, with geniposidic acid and ginsenoside Rg1 detected in the blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.