Abnormal breath sounds like wheezes, crackles and stridor at times manifest similar morphologies and pathological features of lung airways obstruction. This may pose problems to proper diagnosis and evaluation of the underlying respiratory condition by human auscultation. In this study, the authors experimented with Time-Frequency threshold-dependent (TFTD) algorithm for detection and classification of breath sounds based on Smartphone. The TFTD algorithm computes important and distinct features of each breath sound using spectro-temporal analysis of recorded lung sounds which can enhance qualitative measurement and quantitative indexing of different respiratory sounds. Several algorithms which run exclusively on desktop computers have been developed for detecting and analyzing specific lung sounds such as wheezes. However, few attempts have been made to perform such analysis on portable devices like mobile phones due to computational complexities and high power consumption associated with the analyses. Our experimental results demonstrate that recent smartphones with improved computational capacity are able to provide comparative performance on analysis of respiratory signals. Furthermore, these phones can serve as convenient tools for measuring and detecting early signs of pulmonary disorders particularly at home and during ambulatory care services where conventional and specialized medical devices may not be accessible.
Advances in mobile computing have paved the way for the development of several health applications using Smartphone as a platform for data acquisition, analysis and presentation. Such areas where m-health systems have been extensively deployed include monitoring of long-term health conditions like Cardio-Vascular Diseases and pulmonary disorders, as well as detection of changes from baseline measurements of such conditions. Asthma is one of the respiratory conditions with growing concern across the globe due to the economic, social and emotional burden associated with the ailment. The management and control of asthma can be improved by consistent monitoring of the condition in real-time since attack could occur anytime and anywhere. This paper proposes the use of smartphone equipped with built-in sensors, to capture and analyse early symptoms of asthma triggered by exercise. The system design is based on Decision Support System (DSS) techniques for measuring and analysing the level and type of patient's physical activity as well as weather conditions that predispose asthma attack. Preliminary results show that smartphones can be used to monitor and detect asthma symptoms without other networked devices.This would enhance the usability of the health system while ensuring user's data privacy, and reducing the overall cost of system deployment. Further, the proposed system can serve as a handy tool for a quick medical response for asthmatics in low-income countries where there are limited access to specialized medical devices and shortages of health professionals. Development of such monitoring systems signals a positive response to lessen the global burden of asthma.
Mobile health systems in recent times, have notably improved the healthcare sector by empowering patients to actively participate in their health, and by facilitating access to healthcare professionals. Effective operation of these mobile systems nonetheless, requires high level of intelligence and expertise implemented in the form of decision support systems (DSS). However, common challenges in the implementation include generalization and reliability, due to the dynamics and incompleteness of information presented to the inference models. In this paper, we advance the use of ad hoc mobile decision support system to monitor and detect triggers and early symptoms of respiratory distress provoked by strenuous physical exertion. The focus is on the application of certainty theory to model inexact reasoning by the mobile monitoring system. The aim is to develop a mobile tool to assist patients in managing their conditions, and to provide objective clinical data to aid physicians in the screening, diagnosis, and treatment of the respiratory ailments. We present the proposed model architecture and then describe an application scenario in a clinical setting. We also show implementation of an aspect of the system that enables patients in the self-management of their conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.