We develop a systematic typical medium dynamical cluster approximation that provides a proper description of the Anderson localization transition in three dimensions (3D). Our method successfully captures the localization phenomenon both in the low and large disorder regimes, and allows us to study the localization in different momenta cells, which renders the discovery that the Anderson localization transition occurs in a cell-selective fashion. As a function of cluster size, our method systematically recovers the reentrance behavior of the mobility edge and obtains the correct critical disorder strength for Anderson localization in 3D.
We report the electronic structure of monoclinic CuO as obtained from first principles calculations utilizing density functional theory plus effective Coulomb interaction (DFT + U) method. In contrast to standard DFT calculations taking into account electronic correlations in DFT + U gave antiferromagnetic insulator with energy gap and magnetic moment values in good agreement with experimental data. The electronic states around the Fermi level are formed by partially filled Cu 3d x 2 −y 2 orbitals with significant admixture of O 2p states. Theoretical spectra are calculated using DFT + U electronic structure method and their comparison with experimental photoemission and optical spectra show very good agreement.
We report self-consistent ab-initio electronic, structural, elastic, and optical properties of cubic SrTiO3 perovskite. Our non-relativistic calculations employed a generalized gradient approximation (GGA) potential and the linear combination of atomic orbitals (LCAO) formalism. The distinctive feature of our computations stem from solving self-consistently the system of equations describing the GGA, using the Bagayoko-Zhao-Williams (BZW) method. Our results are in agreement with experimental ones where the later are available. In particular, our theoretical, indirect band gap of 3.24 eV, at the experimental lattice constant of 3.91 Å, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 3.92 Å, with a corresponding indirect band gap of 3.21 eV and bulk modulus of 183 GPa
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.