NF-kappaB is a key mediator of inflammation. Here, we mapped the genome-wide loci bound by the RELA subunit of NF-kappaB in lipopolysaccharide (LPS)-stimulated human monocytic cells, and together with global gene expression profiling, found an overrepresentation of the E2F1-binding motif among RELA-bound loci associated with NF-kappaB target genes. Knockdown of endogenous E2F1 impaired the LPS inducibility of the proinflammatory cytokines CCL3(MIP-1alpha), IL23A(p19), TNF-alpha, and IL1-beta. Upon LPS stimulation, E2F1 is rapidly recruited to the promoters of these genes along with p50/RELA heterodimer via a mechanism that is dependent on NF-kappaB activation. Together with the observation that E2F1 physically interacts with p50/RELA in LPS-stimulated cells, our findings suggest that NF-kappaB recruits E2F1 to fully activate the transcription of NF-kappaB target genes. Global gene expression profiling subsequently revealed a spectrum of NF-kappaB target genes that are positively regulated by E2F1, further demonstrating the critical role of E2F1 in the Toll-like receptor 4 pathway.
Tight regulation of p53 is essential for maintaining normal cell growth. Here we report that BLIMP1 acts in an autoregulatory feedback loop that controls p53 activity through repression of p53 transcription. p53 binds to and positively regulates BLIMP1, which encodes for a known B cell transcriptional repressor. Knockdown of BLIMP1 by siRNA results in both apoptosis and growth arrest in human colon cancer cells and cell-cycle arrest in primary human fibroblasts. Interestingly, the levels of both p53 mRNA and protein are substantially increased after BLIMP1 depletion, which is accompanied by the induction of p53 target genes. Importantly, the apoptosis induced by BLIMP1 depletion in HCT116 cells is largely abrogated in cells lacking p53 or in cells depleted in p53 by siRNA. We further demonstrate that BLIMP1 binds to the p53 promoter and represses p53 transcription, and this provides a mechanistic explanation for the induction of p53 response in cells depleted of BLIMP1. Hence, suppression of p53 transcription is a crucial function of endogenous BLIMP1 and is essential for normal cell growth.apoptosis ͉ growth arrest ͉ transcription regulation
Automated image processing is a critical and often rate-limiting step in high-content screening (HCS) workflows. The authors describe an open-source imaging-statistical framework with emphasis on segmentation to identify novel selective pharmacological inducers of autophagy. They screened a human alveolar cancer cell line and evaluated images by both local adaptive and global segmentation. At an individual cell level, region-growing segmentation was compared with histogramderived segmentation. The histogram approach allowed segmentation of a sporadic-pattern foreground and hence the attainment of pixel-level precision. Single-cell phenotypic features were measured and reduced after assessing assay quality control. Hit compounds selected by machine learning corresponded well to the subjective threshold-based hits determined by expert analysis. Histogram-derived segmentation displayed robustness against image noise, a factor adversely affecting region growing segmentation. (Journal of Biomolecular Screening 2010:869-881)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.