Oral squamous cell carcinoma (OSCC), which accounts for nearly 90% of head and neck cancers, is characterized by poor prognosis and a low survival rate. VEGF-A is the most established angiogenic factor involved in the angiogenic-regulated tumor progression. WISP-1/CCN4 is an extracellular matrix-related protein that belongs to the Cyr61, CTGF, Nov (CCN) family and regulates many biological functions, such as angiogenesis. Previous studies indicated the role of WISP-1 in tumor progression. However, the angiogenic property of WISP-1 in the cancer microenvironment has never been discussed. Here, we provide novel insights regarding the role of WISP-1 in the angiogenesis through promoting VEGF-A expression. In this study, the correlation of WISP-1 and VEGF-A was confirmed by IHC staining of specimens from patients with OSCC. In vitro results indicated that WISP-1 induced VEGF-A expression via the integrin αvβ3/FAK/c-Src pathway, which transactivates the EGFR/ERK/HIF1-α signaling pathway in OSCC. This pathway in turn induces the recruitment of endothelial progenitor cells and triggers the neovascularization in the tumor microenvironment. Our in vivo data revealed that tumor-secreted WISP-1 promoted the angiogenesis through VRGF expression and increased angiogenesis-related tumor growth. Our study offers new information that highlights WISP-1 as a potential novel therapeutic target for OSCC.
Oral squamous cell carcinoma (OSCC), which accounts for nearly 90% of head and neck cancers, is characterized by a poor prognosis and a low survival rate. Vascular endothelial growth factor-C (VEGF-C) has been implicated in lymphangiogenesis and is correlated with cancer metastasis. WNT1-inducible signaling pathway protein-1 (WISP)-1/CCN4 is an extracellular matrix-related protein that belongs to the CCN family and stimulates many biological functions. Our previous studies showed that WISP-1 plays an important role in OSCC migration and angiogenesis. However, the effect of WISP-1 on VEGF-C regulation and lymphangiogenesis in OSCC is poorly understood. Here, we showed a correlation between WISP-1 and VEGF-C in tissue specimens from patients with OSCC. To examine the lymphangiogenic effect of WISP-1, we used human lymphatic endothelial cells (LECs) to mimic lymphatic vessel formation. The results showed that conditioned media from WISP-1-treated OSCC cells promoted tube formation and cell migration in LECs. We also found that WISP-1-induced VEGF-C is mediated via the integrin αvβ3/integrin-linked kinase (ILK)/Akt signaling pathway. In addition, the expression of microRNA-300 (miR-300) was inhibited by WISP-1 via the integrin αvβ3/ILK/Akt cascade. Collectively, these results reveal the detailed mechanism by which WISP-1 promotes lymphangiogenesis via upregulation of VEGF-C expression in OSCC. Therefore, WISP-1 could serve as therapeutic target to prevent metastasis and lymphangiogenesis in OSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.