The diesel engine is one of the solutions to slow down fossil fuel depletion due to its high efficiency. However, its high pollutant emission limits its usage in many fields. To improve its efficiency and emissions, a conventional mechanical fuel injection system (MFI) was be replaced with common rail direct injection (CRDI) system for the purpose of this study. In this way, injection parameters such as injection timing, injection pressure and multiple injection schemes can be tuned to enhance the engine performance. The rail pressure and engine speed response of the modified diesel engine was tested. It was found that by advancing the start of injection timing (SOI) timing or increasing the rail pressure, the brake torque generated can be increased. Multiple injection schemes can be implemented to reduce the peak heat release rate (HRR). Post injection was observed to increase the late combustion HRR. The maximum pressure rise rate (PRR) can be reduced by applying pilot injection. Further research was conducted on optimizing fuel injector parameters to improve the indicated mean effective pressure (IMEP) consistency and reduce injector power consumption. The consistency of IMEP was indicated by coefficient of variation (CoV) of IMEP. The injector parameters included open time, low time and duty cycle of injector signals. These parameters were optimized by carrying out response surface methodology. The optimized parameters were observed to be 230 µs for open time, 53µs for low time and 27.5% for duty cycle. The percentage of error of CoV of IMEP and injector power were found to be lower than 5% when the predicted results are compared with experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.