The soft and polar nature of quasi‐2D (PEA)2PbBr4 perovskite, and robust photo‐generated excitons lead exciton‐polaritons and exciton‐polarons as the important phenomena near the band edge for application in the lighting aspect. In this work, a convenient methodology is proposed based on the polariton resonant modes in temperature‐dependent (77 K to RT) spectroscopy, and investigate the effect of these quasi‐particles on refractive index dispersion. The large binding energy (≈335 meV) of quasi‐2D excitons is obtained by the reflectance measurements at 77 K. Stable exciton‐polaritons and exciton‐polarons are confirmed by energy dispersions and the observation of self‐trapped exciton‐polaron state, respectively. Furthermore, the large negative thermal‐optic coefficient due to damping effect of exciton‐phonon scattering is observed. The phenomenon is opposite to those observed in conventional semiconductors (e.g., Si, Ge, GaN, AlN, GaAs, AlAs, and ZnO etc.). The observed stable negative thermal‐optic coefficients from 160 K to RT indicate that the quasi‐2D perovskite can be used as a phase compensator for conventional semiconductor materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.