Digital multimedia systems are creating many new opportunities for rapid access to content archives. In order to explore these collections using search applications, the content must be annotated with significant features. An important and often overlooked aspect of human interpretation of multimedia data is the affective dimension. Affective labels of content can be extracted automatically from within multimedia data streams. These can then be used for contentbased retrieval and browsing. In this study affective features extracted from multimedia audio content are mapped onto a set of keywords with predetermined emotional interpretations. These labels are then used to demonstrate affectbased retrieval on a range of feature films.
Abstract. Content-based video retrieval systems (CBVR) are creating new search and browse capabilities using metadata describing significant features of the data. An often overlooked aspect of human interpretation of multimedia data is the affective dimension. Incorporating affective information into multimedia metadata can potentially enable search using this alternative interpretation of multimedia content. Recent work has described methods to automatically assign affective labels to multimedia data using various approaches. However, the subjective and imprecise nature of affective labels makes it difficult to bridge the semantic gap between system-detected labels and user expression of information requirements in multimedia retrieval. We present a novel affect-based video retrieval system incorporating an open-vocabulary query stage based on WordNet enabling search using an unrestricted query vocabulary. The system performs automatic annotation of video data with labels of well defined affective terms. In retrieval annotated documents are ranked using the standard Okapi retrieval model based on open-vocabulary text queries. We present experimental results examining the behaviour of the system for retrieval of a collection of automatically annotated feature films of different genres. Our results indicate that affective annotation can potentially provide useful augmentation to more traditional objective content description in multimedia retrieval.
Abstract. The emergence of digital multimedia systems is creating many new opportunities for rapid access to huge content archives. In order to fully exploit these information sources, the content must be annotated with significant features. An important aspect of human interpretation of multimedia data, which is often overlooked, is the affective dimension. Such information is a potentially useful component for content-based classification and retrieval. Much of the affective information of multimedia content is contained within the audio data stream. Emotional features can be defined in terms of arousal and valence levels. In this study low-level audio features are extracted to calculate arousal and valence levels of multimedia audio streams. These are then mapped onto a set of keywords with predetermined emotional interpretations. Experimental results illustrate the use of this system to assign affective annotation to multimedia data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.