Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not only identify optimal targets in the pathogens, but also optimal seasonal timings for deployment. Host resistance to effectors must be exploited, carefully and correctly. Are there other candidate genes that could be targeted in transgenic approaches? How can new technologies (CRISPR, TALEN, etc.) be most effectively used to add sustainable disease resistance to existing commercially desirable plant cultivars? We need an insider's perspective on the management of systemic pathogens. In addition to host resistance or reduced sensitivity, are there other methods that can be used to target these pathogen groups? Biological systems are variable. Can biological control strategies be improved for bacterial disease management and be made more predictable in function? The answers to the research foci outlined above are not all available, as will become apparent in this article, but we are heading in the right direction. In this article, we summarize the contributions from past experiences in bacterial disease management, and also describe how advances in bacterial...
Enterobacterial animal pathogens exhibit aggregative multicellular behavior, which is manifested as pellicles on the culture surface and biofilms at the surface-liquid-air interface. Pellicle formation behavior requires production of extracellular polysaccharide, cellulose, and protein filaments, known as curli. Protein filaments analogous to curli are formed by many protein secretion systems, including the type III secretion system (TTSS). Here, we demonstrate that Erwinia chrysanthemi, which does not carry curli genes, requires the TTSS for pellicle formation. These data support a model where cellulose and generic protein filaments, which consist of either curli or TTSS-secreted proteins, are required for enterobacterial aggregative multicellular behavior. Using this assay, we found that hrpY, which encodes a two-component system response regulator homolog, is required for activity of hrpS, which encodes a 54 -dependent enhancer-binding protein homolog. In turn, hrpS is required for activity of the sigma factor homolog hrpL, which activates genes encoding TTSS structural and secreted proteins. Pellicle formation was temperature dependent and pellicles did not form at 36°C, even though TTSS genes were expressed at this temperature. We found that cellulose is a component of the E. chrysanthemi pellicle but that pellicle formation still occurs in a strain with an insertion in a cellulose synthase subunit homolog. Since the TTSS, but not the cellulose synthase subunit, is required for E. chrysanthemi pellicle formation, this inexpensive assay can be used as a high throughput screen for TTSS mutants or inhibitors.Erwinia chrysanthemi is an economically important enterobacterial plant pathogen that causes soft rot and wilt diseases on numerous species of plants. Aggregative multicellular behavior, which results in the formation of large cell aggregates on the culture surface known as pellicles, was demonstrated in E. chrysanthemi over 40 years ago (32). In related species, pellicle formation requires cellulose and protein filaments, known as aggregative fimbriae or curli (37,45,49,52). The recently sequenced E. chrysanthemi 3937 (Ech 3937) genome revealed homologs of genes required for cellulose production in related enterobacteria, but no homologs of genes required for curli synthesis (N. Perna, personal communication). Ech 3937 also does not encode csgD, a regulatory protein that controls curli and cellulose production in related species (18). Thus, the regulatory proteins controlling pellicle formation and whether or not there are protein filaments that play an analogous role to curli in formation of E. chrysanthemi pellicles were unknown.In plant-pathogenic bacteria, the type III secretion system (TTSS) is encoded by hrp (hypersensitive response and pathogenicity) and hrc (hypersensitive response conserved) genes. The TTSS functions as a molecular syringe, injecting virulence proteins into host cells; some of these proteins may interfere with host defense machinery (9,17,23). The hrc genes, many of which are hom...
Dickeya dadantii is a plant-pathogenic enterobacterium responsible for the soft rot disease of many plants of economic importance. We present here the sequence of strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria. Dickeya dadantii, formerly Erwinia chrysanthemi (11), is the causative agent of soft rot disease in a wide range of plant species, including many economically important crops (10). Soft rot results from the maceration of plant tissues following degradation of pectin, the major component of primary cell walls (7). D. dadantii is a devastating opportunistic pathogen in storage organs and fleshy tissues, particularly when compromised by bruising, excess water, low oxygen levels, or high temperatures. D. dadantii is also associated with systemic infections, vascular disorders, foliar necroses, and latent infections in growing plants. We sequenced and annotated the complete genome of Dickeya dadantii strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria. Two whole-genome shotgun libraries were prepared with plasmid pHOS2 with target insert sizes of 2 to 3 kb and 10 to 12 kb. We collected approximately 67,000 dual-end sequences, 67% from small-insert clones and 33% from the larger insert library. Sequences were assembled into contigs using the Celera assembler (9), and this assembly was transferred to SeqMan II (Lasergene) for finishing. Primer walking was employed to close gaps covered by clones available from the shotgun libraries. The remaining gaps were closed by sequencing PCR products generated using primers designed from the ends of assembled and ordered contigs. PCR products spanning each rRNA operon were sequenced separately to resolve sequence differences between copies. We used Glimmer 2.0 (3) for initial prediction of protein coding regions. We added, deleted, and revised endpoints of genes based on comparisons to other genomes, genes, and proteins in the NCBI databases. tRNA sequences were identified using tRNAscan-SE (8) with additional examination to identify specific tRNAs not distinguishable by their anticodons alone. rRNA genes were identified by comparison to other enterobacterial sequences using
Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.