ABSTRACT. Objectives. To study the outcome at 2-year corrected age of infants who participated in a double-blind controlled trial of early (<12 hours) dexamethasone therapy for the prevention of chronic lung disease (CLD).Methods and Materials. A total of 133 children (70 in the control group, 63 in the dexamethasone-treated group) who survived the initial study period and lived to 2 years of age were studied. All infants had birth weights of 500 to 1999 g and had severe respiratory distress syndrome requiring mechanical ventilation within 6 hours after birth. For infants in the treatment group, dexamethasone was started at a mean age of 8.1 hours and given 0.25 mg/kg every 12 hours for 1 week and then tapered off gradually over a 3-week period. The following variables were evaluated: interim medical history, socioeconomic background, physical growth, neurologic examinations, mental and psychomotor development index score (MDI and PDI), pulmonary function, electroencephalogram, and auditory and visual evoked potential.Results. Infants in the control group tended to have a higher incidence of upper respiratory infection and rehospitalization than did the dexamethasone-treated group because of respiratory problems. Although there was no difference between the groups in somatic growth in girls, the dexamethasone-treated boys had significantly lower body weight and shorter height than the control boys (10.7 ؎ 3.0 vs 11.9 ؎ 2.0 kg; 84.9 ؎ 5.7 vs 87.5 ؎ 4.8 cm). The dexamethasone-treated group had a significantly higher incidence of neuromotor dysfunction (25/63 vs 12/70) than did the control group. The dexamethasone-treated infants also had a lower PDI score (79 ؎ 26) than did the control group (87 ؎ 23), but the difference was not statistically significant. Both groups were comparable in MDI, incidence of vision impairment, and auditory and visual evoked potential. Significant handicap, defined as severe neurologic defect and/or intellectual defect (MDI and/or PDI < 69), was seen in 22 children (31.4%) in the control group and 26 (41.2%) in the dexamethasone-treated group.Conclusions. Although early postnatal dexamethasone therapy for 4 weeks significantly reduces the incidence of CLD, this therapeutic regimen cannot be recommended at present because of its adverse effects on neuromotor function and somatic growth in male infants, detected at 2 years of age. A longer follow-up is needed.If early dexamethasone therapy is to be used for the prevention of CLD, the therapeutic regimen should be modified. The proper route of administration, the critical time to initiate the therapy, and the dosage and duration of therapy remain to be defined further. Pediatrics 1998; 101(5). URL: http://www.pediatrics.org/cgi/content/full/ 101/5/e7; preterm infant, early dexamethasone therapy, follow-up study.
Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.
Candida albicans can stochastically switch between two phenotypes, white and opaque. Opaque cells are the sexually competent form of C. albicans and therefore undergo efficient polarized growth and mating in the presence of pheromone. In contrast, white cells cannot mate, but are induced – under a specialized set of conditions – to form biofilms in response to pheromone. In this work, we compare the genetic regulation of such “pheromone-stimulated” biofilms with that of “conventional” C. albicans biofilms. In particular, we examined a network of six transcriptional regulators (Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1) that mediate conventional biofilm formation for their potential roles in pheromone-stimulated biofilm formation. We show that four of the six transcription factors (Bcr1, Brg1, Rob1, and Tec1) promote formation of both conventional and pheromone-stimulated biofilms, indicating they play general roles in cell cohesion and biofilm development. In addition, we identify the master transcriptional regulator of pheromone-stimulated biofilms as C. albicans Cph1, ortholog of Saccharomyces cerevisiae Ste12. Cph1 regulates mating in C. albicans opaque cells, and here we show that Cph1 is also essential for pheromone-stimulated biofilm formation in white cells. In contrast, Cph1 is dispensable for the formation of conventional biofilms. The regulation of pheromone- stimulated biofilm formation was further investigated by transcriptional profiling and genetic analyses. These studies identified 196 genes that are induced by pheromone signaling during biofilm formation. One of these genes, HGC1, is shown to be required for both conventional and pheromone-stimulated biofilm formation. Taken together, these observations compare and contrast the regulation of conventional and pheromone-stimulated biofilm formation in C. albicans, and demonstrate that Cph1 is required for the latter, but not the former.
Citrus brown spot disease is caused by the necrotrophic fungus Alternaria alternata. Its pathogenic capability has been thought to depend exclusively on the production of host-selective ACT toxin. However, circumvention of plant defenses is also likely to be important for the disease process. To investigate the fungal response to host-generated reactive oxygen species (ROS), we cloned and characterized the AaAP1 gene of A. alternata, which encodes a polypeptide resembling yeast YAP1-like transcriptional activators implicated in cellular responses to stress. Expression of the AaAP1 gene in a wild-type strain was primarily induced by H(2)O(2) or ROS-generating oxidants. Using a loss-of-function mutation in the AaAP1 gene, we demonstrated an essential requirement for oxidative tolerance during the host invasion step. Mutants lacking AaAP1 showed increased sensitivity to H(2)O(2) and loss of fungal pathogenicity. The DeltaAaAP1 null mutant did not cause any visible necrotic lesions on wounded or unwounded leaves of citrus cv. Minneola. Compared with the wild type, the null mutant displayed lower catalase, peroxidase, and superoxide dismutase activities. All mutant phenotypes were restored to the wild type in fungal strains expressing a functional copy of AaAP1. Upon exposure to H(2)O(2), the AaAP1::sGFP (synthetic green fluorescent protein) fusion protein became localized in the nucleus. Inoculation of the mutant with NADPH oxidase inhibitors partially restored fungal pathogenicity. Our results highlight the global regulatory role of a YAP1 homolog in response to oxidative stress in A. alternata and provide insights into the critical role of ROS detoxification in the pathogenicity of A. alternata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.